首页> 外文期刊>Distributed and Parallel Databases >A preference-based approach for interactive weight learning: learning weights within a logic-based query language
【24h】

A preference-based approach for interactive weight learning: learning weights within a logic-based query language

机译:基于偏好的交互式权重学习方法:在基于逻辑的查询语言中学习权重

获取原文
获取原文并翻译 | 示例

摘要

The result quality of queries incorporating impreciseness can be improved by the specification of user-defined weights. Existing approaches evaluate weighted queries by applying arithmetic evaluations on top of the query's intrinsic logic. This complicates the usage of logic-based optimization. Therefore, we suggest a weighting approach that is completely embedded in a logic.rnIn order to facilitate the user interaction with the system, we exploit the intuitively comprehensible concept of preferences. In addition, we use a machine-based learning algorithm to learn weighting values in correspondence to the user's intended semantics of a posed query. Experiments show the utility of our approach.
机译:可以通过指定用户定义的权重来提高包含不精确性的查询的结果质量。现有方法通过在查询的内在逻辑之上应用算术评估来评估加权查询。这使基于逻辑的优化的使用变得复杂。因此,我们建议一种完全嵌入到逻辑中的加权方法。为了促进用户与系统的交互,我们采用了直观易懂的偏好概念。另外,我们使用基于机器的学习算法来学习与用户对所构成查询的预期语义相对应的加权值。实验证明了我们方法的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号