首页> 外文期刊>Distributed and Parallel Databases >On compressing data in wireless sensor networks for energy efficiency and real time delivery
【24h】

On compressing data in wireless sensor networks for energy efficiency and real time delivery

机译:在无线传感器网络中压缩数据以提高能源效率和实时交付

获取原文
获取原文并翻译 | 示例

摘要

Wireless sensor networks possess significant limitations in storage, bandwidth, processing, and energy. Additionally, real-time sensor network applications such as monitoring poisonous gas leaks cannot tolerate high latency. While some good data compression algorithms exist specific to sensor networks, in this paper we present TinyPack, a suite of energy-efficient methods with high-compression ratios that reduce latency, storage, and bandwidth usage further in comparison with some other recently proposed algorithms. Our Huffman style compression schemes exploit temporal locality and delta compression to provide better bandwidth utilization important in the wireless sensor network, thus reducing latency for real time sensor-based monitoring applications. Our performance evaluations over many different real data sets using a simulation platform as well as a hardware implementation show comparable compression ratios and energy savings with a significant decrease in latency compared to some other existing approaches. We have also discussed robust error correction and recovery methods to address packet loss and corruption common in sensor network environments.
机译:无线传感器网络在存储,带宽,处理和能量方面具有明显的限制。此外,实时传感器网络应用程序(例如监视有毒气体泄漏)不能忍受高延迟。虽然存在一些针对传感器网络的良好数据压缩算法,但在本文中,我们介绍了TinyPack,这是一套具有高压缩比的节能方法,与最近提出的其他一些算法相比,它们可以进一步减少延迟,存储和带宽使用。我们的霍夫曼风格压缩方案利用时间局部性和增量压缩来提供对无线传感器网络至关重要的更好的带宽利用率,从而减少了基于实时传感器的监视应用程序的等待时间。我们使用仿真平台以及硬件实施方案对许多不同的实际数据集进行了性能评估,结果表明与其他一些现有方法相比,压缩率和能耗可比,并且延迟显着减少。我们还讨论了鲁棒的纠错和恢复方法,以解决传感器网络环境中常见的数据包丢失和损坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号