首页> 外文期刊>Distributed and Parallel Databases >Probabilistic nearest neighbor query processing on distributed uncertain data
【24h】

Probabilistic nearest neighbor query processing on distributed uncertain data

机译:分布式不确定数据的概率最近邻查询处理

获取原文
获取原文并翻译 | 示例

摘要

A nearest neighbor (NN) query, which returns the most similar object to a user-specified query object, plays an important role in a wide range of applications and hence has received considerable attention. In many such applications, e.g., sensor data collection and location-based services, objects are inherently uncertain. Furthermore, due to the ever increasing generation of massive datasets, the importance of distributed databases, which deal with such data objects, has been growing. One emerging challenge is to efficiently process probabilistic NN queries over distributed uncertain databases. The straightforward approach, that each local site forwards its own database to the central server, is communication-expensive, so we have to minimize communication cost for the NN object retrieval. In this paper, we focus on two important queries, namely top-k probable NN queries and probabilistic star queries, and propose efficient algorithms to process them over distributed uncertain databases. Extensive experiments on both real and synthetic data have demonstrated that our algorithms significantly reduce communication cost.
机译:将最相似的对象返回到用户指定的查询对象的最近邻居(NN)查询在广泛的应用程序中发挥着重要作用,因此受到了极大的关注。在许多这样的应用中,例如传感器数据收集和基于位置的服务,对象固有地是不确定的。此外,由于海量数据集的不断增长,处理此类数据对象的分布式数据库的重要性日益提高。一个新出现的挑战是如何有效地处理分布式不确定数据库上的概率NN查询。每个本地站点将其自己的数据库转发到中央服务器的直接方法是通信昂贵的,因此我们必须最小化NN对象检索的通信成本。在本文中,我们将重点放在两个重要的查询上,即top-k可能的NN查询和概率星查询,并提出有效的算法来处理分布式不确定数据库。对真实数据和合成数据进行的大量实验表明,我们的算法大大降低了通信成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号