首页> 外文期刊>Distributed and Parallel Databases >MetaStore: an adaptive metadata management framework for heterogeneous metadata models
【24h】

MetaStore: an adaptive metadata management framework for heterogeneous metadata models

机译:MetaStore:用于异构元数据模型的自适应元数据管理框架

获取原文
获取原文并翻译 | 示例

摘要

AbstractIn this paper, we present MetaStore, a metadata management framework for scientific data repositories. Scientific experiments are generating a deluge of data, and the handling of associated metadata is critical, as it enables discovering, analyzing, reusing, and sharing of scientific data. Moreover, metadata produced by scientific experiments are heterogeneous and subject to frequent changes, demanding a flexible data model. Existing metadata management systems provide a broad range of features for handling scientific metadata. However, the principal limitation of these systems is their architecture design that is restricted towards either a single or at the most a few standard metadata models. Support for handling different types of metadata models, i.e., administrative, descriptive, structural, and provenance metadata, and including community-specific metadata models is not possible with these systems. To address this challenge, we present MetaStore, an adaptive metadata management framework based on a NoSQL database and an RDF triple store. MetaStore provides a set of core functionalities to handle heterogeneous metadata models by automatically generating the necessary software code (services) and on-the-fly extends the functionality of the framework. To handle dynamic metadata and to control metadata quality, MetaStore also provides an extended set of functionalities such as enabling annotation of images and text by integrating the Web Annotation Data Model, allowing communities to define discipline-specific vocabularies using Simple Knowledge Organization System, and providing advanced search and analytical capabilities by integrating the ElasticSearch. To maximize the utilization of the data models supported by NoSQL databases, MetaStore automatically segregates the different categories of metadata in their corresponding data models. Complex provenance graphs and dynamic metadata are modeled and stored in an RDF triple store, whereas the static metadata is stored in a NoSQL database. For enabling large-scale harvesting (sharing) of metadata using the METS standard over the OAI-PMH protocol, MetaStore is designed OAI-compliant. Finally, to show the practical usability of the MetaStore framework and that the requirements from the research communities have been realized, we describe our experience in the adoption of MetaStore for three communities.
机译: Abstract 在本文中,我们介绍了MetaStore,这是一种用于科学数据存储库的元数据管理框架。科学实验正在产生大量数据,而相关联的元数据的处理至关重要,因为它可以发现,分析,重用和共享科学数据。此外,由科学实验产生的元数据是异类的,并且经常变化,因此需要灵活的数据模型。现有的元数据管理系统提供了用于处理科学元数据的广泛功能。但是,这些系统的主要局限性在于其体系结构设计,该体系结构设计仅限于单个或最多几个标准元数据模型。这些系统无法支持处理不同类型的元数据模型,即管理,描述性,结构性和出处的元数据,并包括特定于社区的元数据模型。为了解决这一挑战,我们提出了MetaStore,这是一种基于NoSQL数据库和RDF三重存储的自适应元数据管理框架。 MetaStore通过自动生成必要的软件代码(服务)提供了一组核心功能来处理异构元数据模型,并实时扩展了框架的功能。为了处理动态元数据并控制元数据质量,MetaStore还提供了扩展功能集,例如通过集成Web注释数据模型来启用图像和文本的注释,允许社区使用Simple Knowledge Organization System定义特定学科的词汇表以及提供通过集成ElasticSearch的高级搜索和分析功能。为了最大程度地利用NoSQL数据库支持的数据模型,MetaStore会自动将不同类别的元数据隔离在其相应的数据模型中。对复杂的出处图和动态元数据进行建模并存储在RDF三元组存储中,而静态元数据存储在NoSQL数据库中。为了通过OAI-PMH协议使用METS标准实现大规模收集(共享)元数据,MetaStore设计为符合OAI。最后,为了展示MetaStore框架的实用性以及已实现研究社区的要求,我们描述了我们在三个社区采用MetaStore的经验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号