首页> 外文期刊>Discrete and continuous dynamical systems >IMPACT OSCILLATORS OF HILL'S TYPE WITH INDEFINITE WEIGHT: PERIODIC AND CHAOTIC DYNAMICS
【24h】

IMPACT OSCILLATORS OF HILL'S TYPE WITH INDEFINITE WEIGHT: PERIODIC AND CHAOTIC DYNAMICS

机译:山型振荡器的无限重量:周期性和混沌动力学

获取原文
获取原文并翻译 | 示例

摘要

We prove the existence of globally defined bouncing solutions with prescribed number of impacts in the intervals of negativity and positivity of q. Furthermore, we show that when q is periodic, the equation under consideration exhibits an interesting phenomenon of chaotic-like dynamics. Finally, in case that q is even and periodic, we prove the existence and multiplicity of the even and periodic bouncing solutions for the Hill's type equation in case of f ≡ 0.
机译:我们证明了全局定义的弹跳解决方案,具有规定的Q.的消极性间隔和Q的正常性。此外,我们表明,当Q是周期性时,所考虑的等式表现出混乱的动态的有趣现象。最后,在Q是偶数和周期性的情况下,我们证明了在F≥0的情况下为Hill型方程的偶数和周期性弹跳解决方案的存在和多重性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号