首页> 外文期刊>MBio >Bacterial Quorum-Sensing Regulation Induces Morphological Change in a Key Host Tissue during the Euprymna scolopes- Vibrio fischeri Symbiosis
【24h】

Bacterial Quorum-Sensing Regulation Induces Morphological Change in a Key Host Tissue during the Euprymna scolopes- Vibrio fischeri Symbiosis

机译:细菌仲裁传感调节在<命名含量含量型=“属型”> euprymna scolopes - <命名内容内容=“属的属中,诱导关键宿主组织的形态变化 “> vibrio fischeri 共生

获取原文
获取外文期刊封面目录资料

摘要

ABSTRACT Microbes colonize the apical surfaces of polarized epithelia in nearly all animal taxa. In one example, the luminous bacterium Vibrio fischeri enters, grows to a dense population within, and persists for months inside, the light-emitting organ of the squid Euprymna scolopes . Crucial to the symbiont’s success after entry is the ability to trigger the constriction of a host tissue region (the “bottleneck”) at the entrance to the colonization site. Bottleneck constriction begins at about the same time as bioluminescence, which is induced in V. fischeri through an autoinduction process called quorum sensing. Here, we asked the following questions: (i) Are the quorum signals that induce symbiont bioluminescence also involved in triggering the constriction? (ii) Does improper signaling of constriction affect the normal maintenance of the symbiont population? We manipulated the presence of three factors, the two V. fischeri quorum signal synthases, AinS and LuxI, the transcriptional regulator LuxR, and light emission itself, and found that the major factor triggering and maintaining bottleneck constriction is an as yet unknown effector(s) regulated by LuxIR. Treating the animal with chemical inhibitors of actin polymerization reopened the bottlenecks, recapitulating the host’s response to quorum-sensing defective symbionts, as well as suggesting that actin polymerization is the primary mechanism underlying constriction. Finally, we found that these host responses to the presence of symbionts changed as a function of tissue maturation. Taken together, this work broadens our concept of how quorum sensing can regulate host development, thereby allowing bacteria to maintain long-term tissue associations.
机译:摘要微生物在几乎所有的动物分类群中定植了极化上皮的顶部表面。在一个实例中,发光的细菌vibriofischeri进入,生长到内部的致密种群,并且在鱿鱼的发光器官中持续到鱿鱼的发光器官。在进入后,对共生的成功至关重要是能够在殖民化地区入口处触发主体组织区域的收缩(“瓶颈”)的能力。瓶颈收缩从大约与生物发光开始的瓶颈,通过称为仲裁感测的自动化过程在V.Fischeri中诱导。在这里,我们提出以下问题:(i)是诱导触发收缩的Symbiont生物发光的仲裁信号? (ii)收缩的信令不正确影响Symbiont人群的正常维护?我们操纵了三个因素,两种V.Fischeri法定信号合成酶,AINS和LUXI,转录调节器LUXR和发光本身,发现主要因素触发和维持瓶颈收缩是尚未提知的效应器(S. )由卢克尔监管。用肌动蛋白聚合的化学抑制剂将动物重新打开瓶颈,重新承载宿主对频率传感缺陷的共性的反应,以及施用肌动蛋白聚合是底层收缩的主要机制。最后,我们发现这些主机对Symbionts的存在作为组织成熟的函数。在一起,这项工作拓宽了Quorum感测如何调节宿主的概念,从而允许细菌保持长期组织关联。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号