首页> 外文期刊>AIP Advances >Cavitation generation and inhibition. I. Dominant mechanism of turbulent kinetic energy for cavitation evolution
【24h】

Cavitation generation and inhibition. I. Dominant mechanism of turbulent kinetic energy for cavitation evolution

机译:空化产生和抑制。 I.湍流动能对空化进化的主导机制

获取原文
获取外文期刊封面目录资料

摘要

Through energy conservation and transformation perspectives, we numerically investigated the physical mechanism of cavitation generation surrounding the two-dimensional NACA 0015 hydrofoil using the mass-transfer cavitation model and modified-RNG k-epsilon model. Cavitation generation is triggered by strong turbulent kinetic energy (TKE) with pressure below the saturation pressure. However, cavitation development absorbs TKE as phase-change energy and decreases kinetic energy in near-wall flow fields, thereby increasing pressure according to the energy conservation law. The increased pressure closes the cavity and generates an attached vortex or re-entrant jet, which causes cavitation collapse, conversely decreasing the pressure to the saturation pressure in the leading edge. Simultaneously, the cavitation collapse releases phase-change energy that increases TKE to a maximum so that a new period begins. Cavitation evolution is an interaction between the vapor and liquid flow fields associated with energy conservation and transformation among TKE, pressure, and phase-change energy. Beyond 50% of the chord length, the TKE and pressure-energy in the near-wall flow fields decrease, resulting in the cavitation instability. Within the cavity, the relationship between the local TKE intensity and the volume fraction of water vapor is quantitatively defined as a linear function. Two designs are proposed for the verification of the mechanism and cavitation inhibition, namely, grooves on the hydrofoil surface and bilateral wings in the tail. Grooves do not affect TKE intensity significantly and hence cannot change the cavitating flows. Bilateral tail-wings transfer TKEs from the leading edge to the wake flows and inhibit the cavitation remarkably. The TKE distribution is the dominant mechanism for cavitation generation and stability.
机译:通过节能和转化的观点,我们使用传质空化模型和改性RNG K-EPSILON模型进行了数值研究了围绕二维NACA 0015水翼仪围绕的空化产生的物理机制。通过强大的湍流动能(TKE)触发空化产生,压力低于饱和压力。然而,空化开发吸收TKE作为相变能,并降低近壁流场中的动能,从而根据节能法增加压力。增加的压力封闭了腔,并产生附着的涡流或再参赛者,这导致空化坍塌,相反地将压力降低到前缘中的饱和压力。同时,空化塌陷释放相变能量,使TKE增加到最大值,以便新的时期开始。空化进化是与TKE,压力和相变能之间的节能和变换相关的蒸汽和液体流场之间的相互作用。超过50%的弦长,近壁流场中的TKE和压力能降低,导致空化不稳定。在腔内,定量地定义了局部TKE强度和水蒸气的体积分数之间的关系作为线性函数。提出了两个设计用于验证机构和空化抑制,即水翼表面上的凹槽和尾部的双侧翼。凹槽不会显着影响TKE强度,因此不能改变空腔流动。双侧尾翼从前沿传递TKE到唤醒流动并显着抑制空化。 TKE分布是空化产生和稳定性的主导机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号