首页> 外文期刊>The Cryosphere Discussions >Long-term surface energy balance of the western Greenland Ice Sheet and the role of large-scale circulation variability
【24h】

Long-term surface energy balance of the western Greenland Ice Sheet and the role of large-scale circulation variability

机译:西格陵兰冰盖的长期表面能平衡和大规模循环变异的作用

获取原文
获取外文期刊封面目录资料

摘要

We present the surface energy balance (SEB) of the western Greenland Ice Sheet (GrIS) using an energy balance model forced with hourly observations from nine automatic weather stations (AWSs) along two transects: the Kangerlussuaq (K) transect with seven AWSs in the southwest and the Thule (T) transect with two AWSs in the northwest. Modeled and observed surface temperatures for non-melting conditions agree well with RMSEs of 1.1–1.6K, while reasonable agreement is found between modeled and observed 10d cumulative ice melt. Absorbed shortwave radiation (Snet) is the main energy source for melting (M), followed by the sensible heat flux (Qh). The multiyear average seasonal cycle of SEB components shows that Snet and M peak in July at all AWSs. The turbulent fluxes of sensible (Qh) and latent heat (Ql) decrease significantly with elevation, and the latter becomes negative at higher elevations, partly offsetting Qh. Average June, July and August (JJA) albedo values are 0.6 for stations below 1000ma.s.l.?and 0.7 for the higher stations. The near-surface climate variables and surface energy fluxes from reanalysis products ERA-Interim, ERA5 and the regional climate model RACMO2.3 were compared to the AWS values. The newer ERA5 product only significantly improves ERA-Interim for albedo. The regional model RACMO2.3, which has higher resolution (5.5km) and a dedicated snow/ice module, unsurprisingly outperforms the reanalyses for (near-)surface climate variables, but the reanalyses are indispensable in detecting dependencies of west Greenland climate and melt on large-scale circulation variability. We correlate ERA5 with the AWS data to show a significant positive correlation of western GrIS summer surface temperature and melt with the Greenland Blocking Index (GBI) and weaker and opposite correlations with the North Atlantic Oscillation (NAO). This analysis may further help to explain melting patterns on the western GrIS from the perspective of circulation anomalies.
机译:我们使用从九次自动气象站(AWSS)沿着两个横断面的时间平衡模型介绍​​西方格陵兰冰盖(GRIS)的表面能平衡(SEB):Kangerlussuaq(k)在七个AWS中横断西南和Thule(T)在西北部的两个AWSS横断。非熔化条件的建模和观测的表面温度与1.1-1.6K的RMS相同,而建模和观察到的10D累积冰熔体中发现合理协议。吸收的短波辐射(SNET)是用于熔化(M)的主要能量源,其次是明智的热通量(QH)。 Seb组件的多年平均季节周期显示,七月在所有AWSS中的SNET和M峰。升高的湍流(QH)和潜热(Q1)的湍流通量显着降低,后者在较高升高处变为负,部分偏移QH。 6月份,7月和8月(JJA)的Albedo值为0.6,适用于高于1000mA.S.L.?AND 0.7的车站。与AWS值相比,从Reanalysis Product Era-Interim,ERA5和区域气候模型中的近表面气候变量和表面能量通量与AWS值进行比较。较新的ERA5产品仅限于Albedo的ERA临时。 racmo2.3的区域模型(5.5km)和专用的雪/冰模块,不出所料地优于(近)表面气候变量,但是Reanalyses在检测西格陵兰气候和熔化的依赖方面是必不可少的关于大规模循环变异性。我们将ERA5与AWS数据相关联,展示西部GRIS夏季表面温度和熔化与格陵兰封锁指数(GBI)的显着正相关性,与北大西洋振荡(NAO)较弱和相反的相关性。这种分析可以进一步帮助从循环异常的角度解释西方GRIS上的熔化模式。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号