首页> 外文期刊>Journal of Ophthalmology >Automated Detection of Macular Diseases by Optical Coherence Tomography and Artificial Intelligence Machine Learning of Optical Coherence Tomography Images
【24h】

Automated Detection of Macular Diseases by Optical Coherence Tomography and Artificial Intelligence Machine Learning of Optical Coherence Tomography Images

机译:光学相干断层扫描和光学相干断层扫描图像的人工智能机器学习自动检测黄斑疾病

获取原文

摘要

Purpose. Although optical coherence tomography (OCT) is essential for ophthalmologists, reading of findings requires expertise. The purpose of this study is to test deep learning with image augmentation for automated detection of chorioretinal diseases. Methods. A retina specialist diagnosed 1,200 OCT images. The diagnoses involved normal eyes (n=570) and those with wet age-related macular degeneration (AMD) (n=136), diabetic retinopathy (DR) (n=104), epiretinal membranes (ERMs) (n=90), and another 19 diseases. Among them, 1,100 images were used for deep learning training, augmented to 59,400 by horizontal flipping, rotation, and translation. The remaining 100 images were used to evaluate the trained convolutional neural network (CNN) model. Results. Automated disease detection showed that the first candidate disease corresponded to the doctor’s decision in 83 (83%) images and the second candidate disease in seven (7%) images. The precision and recall of the CNN model were 0.85 and 0.97 for normal eyes, 1.00 and 0.77 for wet AMD, 0.78 and 1.00 for DR, and 0.75 and 0.75 for ERMs, respectively. Some of rare diseases such as Vogt–Koyanagi–Harada disease were correctly detected by image augmentation in the CNN training. Conclusion. Automated detection of macular diseases from OCT images might be feasible using the CNN model. Image augmentation might be effective to compensate for a small image number for training.
机译:目的。虽然光学相干断层扫描(OCT)对于眼科医生至关重要,但读取调查结果需要专业知识。本研究的目的是测试与图像增强进行深度学习,以自动检测肠景疾病。方法。视网膜专家诊断为1,200个OCT图像。诊断涉及正常的眼睛(n = 570)和湿式年龄相关性黄斑(AMD)(n = 136)的那些,糖尿病视网膜病变(DR)(n = 104),表位膜(ERMs)(n = 90),另外19个疾病。其中,通过水平翻转,旋转和翻译,1,100张图像用于深度学习培训,增强至59,400。其余100个图像用于评估训练卷曲的神经网络(CNN)模型。结果。自动化疾病检测表明,第一候选疾病与医生在83(83%)图像中的决定和七(7%)图像中的第二候选疾病。正常眼睛的CNN模型的精度和召回为0.85和0.97,湿AMD为0.78和0.77,分别为ORM的0.78和1.00和0.75和0.75。通过CNN训练中的图像增强,正确地检测到Vogt-Koyanagi-harada病等一些罕见疾病。结论。使用CNN模型可以自动检测来自OCT图像的黄斑图像可能是可行的。图像增强可能有效地弥补培训的小型图像编号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号