首页> 外文期刊>Frontiers in Marine Science >Population Structure and Genetic Connectivity of Squat Lobsters (Munida Leach, 1820) Associated With Vulnerable Marine Ecosystems in the Southwest Pacific Ocean
【24h】

Population Structure and Genetic Connectivity of Squat Lobsters (Munida Leach, 1820) Associated With Vulnerable Marine Ecosystems in the Southwest Pacific Ocean

机译:蹲下龙​​虾(Munida Leach,1820)与西南太平洋脆弱的海洋生态系统相关的人口结构和遗传连通性

获取原文
获取外文期刊封面目录资料

摘要

Studies of genetic diversity and population genetic structure in deep-sea fauna mainly focus on vulnerable marine ecosystem (VME) indicator taxa, whilst relatively few studies have focussed on VME-associated taxa whose distributions are not exclusively limited to VMEs. Knowledge of genetic connectivity (gene flow) amongst populations of VME-associated taxa, such as squat lobsters, will contribute to ongoing management decision-making related to the protection of VMEs. To better understand the genetic diversity and genetic structure of squat lobster populations (Munida isos, M. endeavourae and M. gracilis) at different spatial scales (biogeographic provinces, regions, and geomorphic features) in the southwest Pacific Ocean, mitochondrial COI region and nuclear microsatellite markers were employed. Overall, the levels of genetic diversity were high for the COI region and moderate for the microsatellite loci across the three Munida species. AMOVA of COI variation revealed no significant genetic differentiation, whereas AMOVA of microsatellite variation revealed significant genetic differentiation amongst the three species, but at different spatial scales. Based on microsatellite variation, a range of analyses (Structure, PCoA, DAPC) provided some evidence of limited genetic differentiation at different spatial scales across the three species. Low to moderate levels of assignment success (~40–60%) based on microsatellite variation were achieved for the three Munida species, suggesting high levels of gene flow and possible panmixia. Nonetheless, for Munida isos, populations from the Tasmanian slope were genetically differentiated from all other populations and may act as source populations, whereas populations from the Kermadec Ridge region may be sink populations for all three Munida species. Our results highlight the need to consider gene flow at trans-national scales when managing anthropogenic impacts on VMEs. The results are discussed in the context of existing marine protected areas, which can contribute new information useful to the management of VMEs within the southwest Pacific Ocean.
机译:深海动物区遗传多样性和群体遗传结构的研究主要关注弱势海洋生态系统(VME)指标分类群,而相对较少的研究侧重于VME相关的分布不仅限于VMES。遗传连通性(基因流动)的知识在VME相关的分类群中的群体中,例如蹲龙虾,将有助于与保护VMES的持续管理决策。为了更好地了解西南太平洋,线粒体COI地区和核的不同空间鳞片(生物地图省,地区和地貌特征的不同空间鳞片(生物地图省,地貌和地貌)的蹲伏种群的遗传多样性和遗传结构。使用微卫星标记。总体而言,COI区的遗传多样性高度高,在三个局部种类的微卫星基因座中温和。 COI变异的AMOVA没有显着的遗传分化,而微卫星变异的AMOVA揭示了三种物种中的显着遗传分化,但在不同的空间尺度上。基于微卫星变异,一系列分析(结构,PCOA,DAPC)提供了一些在三种种类的不同空间鳞片下的有限遗传分化的证据。对于三种局部物种,实现了基于微卫星变异的基于微卫星变异的低于适度的分配成功(〜40-60%),表明高水平的基因流动和可能的胰腺炎。尽管如此,对于南部索诺斯,塔斯马尼亚山坡的人口从所有其他群体的基因差异化,可以充当源人群,而Kermadec Ridge地区的人口可能是所有三个局部村庄的汇总群体。我们的结果强调了在管理对VMES的人为影响时,需要考虑跨国鳞片的基因流动。结果在现有的海洋保护区的背景下讨论,这可以为西南太平洋内部的VMES管理有助于管理新信息。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号