首页> 外文期刊>Journal of bacteriology >Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase.
【24h】

Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase.

机译:铁在大肠杆菌的δ毛皮突变体中产生致命的氧化损伤和诱变:超氧化物歧化酶的保护作用。

获取原文
获取外文期刊封面目录资料

摘要

The Escherichia coli Fur protein, with its iron(II) cofactor, represses iron assimilation and manganese superoxide dismutase (MnSOD) genes, thus coupling iron metabolism to protection against oxygen toxicity. Iron assimilation is triggered by iron starvation in wild-type cells and is constitutive in fur mutants. We show that iron metabolism deregulation in fur mutants produces an iron overload, leading to oxidative stress and DNA damage including lethal and mutagenic lesions. fur recA mutants were not viable under aerobic conditions and died after a shift from anaerobiosis to aerobiosis. Reduction of the intracellular iron concentration by an iron chelator (ferrozine), by inhibition of ferric iron transport (tonB mutants), or by overexpression of the iron storage ferritin H-like (FTN) protein eliminated oxygen sensitivity. Hydroxyl radical scavengers dimethyl sulfoxide and thiourea also provided protection. Functional recombinational repair was necessary for protection, but SOS induction was not involved. Oxygen-dependent spontaneous mutagenesis was significantly increased in fur mutants. Similarly, SOD deficiency rendered sodA sodB recA mutants nonviable under aerobic conditions. Lethality was suppressed by tonB mutations but not by iron chelation or overexpression of FTN. Thus, superoxide-mediated iron reduction was responsible for oxygen sensitivity. Furthermore, overexpression of SOD partially protected fur recA mutants. We propose that a transient iron overload, which could potentially generate oxidative stress, occurs in wild-type cells on return to normal growth conditions following iron starvation, with the coupling between iron and MnSOD regulation helping the cells cope.
机译:大肠杆菌Fur蛋白及其铁(II)辅助因子可抑制铁同化和锰超氧化物歧化酶(MnSOD)基因,从而将铁代谢与防止氧中毒结合起来。铁同化作用是由野生型细胞中的铁饥饿引起的,并且在毛皮突变体中是组成性的。我们表明,毛皮突变体中铁代谢的失调会产生铁过载,从而导致氧化应激和DNA损伤,包括致死性和致突变性病变。 fur recA突变体在有氧条件下不可行,并且在从厌氧菌转变为需氧菌后死亡。通过铁螯合剂(ferrozine),抑制三价铁运输(tonB突变体)或过表达铁存储铁蛋白H样(FTN)蛋白来降低细胞内铁浓度消除了氧敏感性。羟基自由基清除剂二甲基亚砜和硫脲也提供了保护。为了保护起见,必须进行功能性重组修复,但不涉及SOS诱导。氧依赖性自发诱变在毛皮突变体中显着增加。同样,SOD缺乏使sodA sodB recA突变体在有氧条件下不可行。 tonB突变可抑制致命性,但铁螯合或FTN的过表达则不能抑制。因此,超氧化物介导的铁还原是氧气敏感性的原因。此外,SOD的过表达部分保护了fur recA突变体。我们建议在铁饥饿后恢复正常生长条件时,野生型细胞中会发生短暂的铁超负荷,这可能会产生氧化应激,铁与MnSOD调节之间的耦合有助于细胞应对。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号