首页> 外文期刊>E3S Web of Conferences >Thermal energy storage in combined cycle power plants: comparing finite volume to finite element methods
【24h】

Thermal energy storage in combined cycle power plants: comparing finite volume to finite element methods

机译:联合循环电厂的热能存储:比较有限体积法和有限元法

获取原文
       

摘要

The research in thermal energy storage (TES) systems has a long track record. However, there are several technical challenges that need to be overcome, to become omnipresent and reach their full potential. These include performance, physical size, weight and dynamic response. In many cases, it is also necessary to be able to achieve the foregoing at greater and greater scale, in terms of power and energy. One of the applications in which these challenges prevail is in the integration of a thermal energy storage with the gas turbine (GT) compressor inlet conditioning system in a combined cycle power plant. The system is intended to provide either GT cooling or heating, based on the operational strategy of the plant. As a contribution to tackle the preceding, this article describes a series of 3-dimensional (3D) numerical simulations, employing different Computational Fluid Dynamics (CFD) methods, to study the transient effects of inlet temperature and flow rate variation on the performance of an encapsulated TES with phase change materials (PCM). A sensitivity analysis is performed where the heat transfer fluid (HTF) temperature varies from -7°C to 20°C depending on the operating mode of the TES (charging or discharging). The flow rate ranges from 50% to 200% of the nominal inflow rate. Results show that all examined cases lead to instant thermal power above 100kWth. Moreover, increasing the flow rate leads to faster solidification and melting. The increment in each process depends on the driving temperature difference between the encapsulated PCM and the HTF inlet temperature. Lastly, the effect of the inlet temperature has a larger effect as compared to the mass flow rate on the efficiency of the heat transfer of the system.
机译:热能存储(TES)系统的研究有着悠久的历史。但是,要克服这些技术挑战,使其无处不在并发挥其全部潜力,就需要克服一些技术挑战。这些包括性能,物理尺寸,重量和动态响应。在许多情况下,就功率和能量而言,还必须能够实现越来越大的规模。这些挑战盛行的应用之一是在联合循环发电厂中将热能存储与燃气轮机(GT)压缩机入口调节系统集成在一起。该系统旨在根据工厂的运行策略提供GT冷却或加热。为了解决上述问题,本文介绍了一系列3维(3D)数值模拟,采用不同的计算流体动力学(CFD)方法,以研究入口温度和流量变化对管道性能的瞬态影响。采用相变材料(PCM)封装的TES。根据TES的工作模式(充电或放电),在传热流体(HTF)温度从-7°C到20°C不等的情况下进行灵敏度分析。流量范围为标称流入量的50%至200%。结果表明,所有检查过的情况都会导致100kWth以上的瞬时火力发电。而且,增加流速导致更快的固化和熔化。每个过程中的增量取决于封装的PCM和HTF入口温度之间的驱动温度差。最后,与质量流率相比,入口温度对系统传热效率的影响更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号