首页> 外文期刊>Applied and Environmental Microbiology >Improved Production of Propionic Acid in Propionibacterium jensenii via Combinational Overexpression of Glycerol Dehydrogenase and Malate Dehydrogenase from Klebsiella pneumoniae
【24h】

Improved Production of Propionic Acid in Propionibacterium jensenii via Combinational Overexpression of Glycerol Dehydrogenase and Malate Dehydrogenase from Klebsiella pneumoniae

机译:肺炎克雷伯氏菌中甘油脱氢酶和苹果酸脱氢酶的联合过表达提高了詹氏丙酸杆菌中丙酸的产量

获取原文
获取外文期刊封面目录资料

摘要

Microbial production of propionic acid (PA), an important chemical building block used as a preservative and chemical intermediate, has gained increasing attention for its environmental friendliness over traditional petrochemical processes. In previous studies, we constructed a shuttle vector as a useful tool for engineering Propionibacterium jensenii, a potential candidate for efficient PA synthesis. In this study, we identified the key metabolites for PA synthesis in P. jensenii by examining the influence of metabolic intermediate addition on PA synthesis with glycerol as a carbon source under anaerobic conditions. We also further improved PA production via the overexpression of the identified corresponding enzymes, namely, glycerol dehydrogenase (GDH), malate dehydrogenase (MDH), and fumarate hydratase (FUM). Compared to those in wild-type P. jensenii, the activities of these enzymes in the engineered strains were 2.91- ± 0.17- to 8.12- ± 0.37-fold higher. The transcription levels of the corresponding enzymes in the engineered strains were 2.85- ± 0.19- to 8.07- ± 0.63-fold higher than those in the wild type. The coexpression of GDH and MDH increased the PA titer from 26.95 ± 1.21 g/liter in wild-type P. jensenii to 39.43 ± 1.90 g/liter in the engineered strains. This study identified the key metabolic nodes limiting PA overproduction in P. jensenii and further improved PA titers via the coexpression of GDH and MDH, making the engineered P. jensenii strain a potential industrial producer of PA.
机译:丙酸(PA)的微生物生产,一种用作防腐剂和化学中间体的重要化学构件,由于其对环境的友好性优于传统的石油化学工艺,因此受到越来越多的关注。在以前的研究中,我们构建了一个穿梭载体,作为工程化丙酸丙酸杆菌(一种有效的PA合成的潜在候选物)的有用工具。在这项研究中,我们通过检查厌氧条件下以甘油为碳源的代谢中间体添加对PA合成的影响,确定了詹氏疟原虫PA合成的关键代谢物。我们还通过过量表达已鉴定的相应酶,即甘油脱氢酶(GDH),苹果酸脱氢酶(MDH)和富马酸盐水合酶(FUM),进一步提高了PA的产量。与野生型詹氏疟原虫相比,工程菌株中这些酶的活性高2.91-±0.17-至8.12-±0.37倍。与野生型相比,工程菌株中相应酶的转录水平高2.85-±0.19-至8.07-±0.63倍。 GDH和MDH的共表达使PA滴度从野生型詹氏疟原虫中的26.95±1.21 g /升增加到工程菌株中的39.43±1.90 g /升。这项研究确定了关键代谢节点,限制了詹氏疟原虫PA的过量生产,并通过GDH和MDH的共表达进一步改善了PA的效价,使工程化的詹氏疟原虫菌株成为PA的潜在工业生产者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号