首页> 外文期刊>Journal of Modern Physics >Helmholtz Theorems, Gauge Transformations, General Covariance and the Empirical Meaning of Gauge Conditions
【24h】

Helmholtz Theorems, Gauge Transformations, General Covariance and the Empirical Meaning of Gauge Conditions

机译:亥姆霍兹定理,量具转换,一般协方差和量具条件的经验意义

获取原文
获取外文期刊封面目录资料

摘要

It is well known that the use of Helmholtz decomposition theorem for static vector fields , when applied to the time dependent vector fields?, which represent the electromagnetic field, allows us to obtain instantaneous-like solutions all along . For this reason, some people thought (see e.g. [1] and references therein) that the Helmholtz theorem cannot be applied to time dependent vector fields and some modification is wanted in order to get the retarded solutions. However, the use of the Helmholtz theorem for static vector fields is correct even for time dependent vector fields (see, e.g. [2]), so a relation between the solutions was required, in such a way that a retarded solution can be transformed in an instantaneous one, and conversely. On this paper we want to suggest, following most of the time the mathematical formalism of Woodside in [3], that: 1) there are many Helmholtz decompositions, all equally consistent, 2) each one is naturally related to a space-time structure, 3) when we use the Helmholtz decomposition for the electromagnetic potentials it is equivalent to a gauge transformation, 4) there is a natural methodological criterion for choosing the gauge according to the structure postulated for a global space-time, 5) the Helmholtz decomposition is the manifestation at the level of the fields that a gauge is involved. So, when we relate the retarded solution to the instantaneous one what we do is to change the gauge and the space-time. And, if the Helmholtz decompositions are related to a space-time structure, and are equivalent to gauge transformations, each gauge transformation is natural for a specific space-time. In this way, a Helmholtz decomposition for Euclidean space is equivalent to the Coulomb gauge and a Helmholtz decomposition for the Minkowski space is equivalent to the Lorenz gauge. This leads us to consider that the theories defined by different gauges may be mathematically equivalent, because they can be related by means of a gauge transformation, but they are not empirically equivalent, because they have quite different observational consequences due to the different space-time structure involved.
机译:众所周知,当将Helmholtz分解定理用于静态矢量场时,当将其应用于表示电磁场的时间相关矢量场时,可以使我们始终获得类似于瞬时的解。由于这个原因,一些人认为(参见例如[1]及其中的参考文献)不能将Helmholtz定理应用于时间相关的矢量场,并且需要一些修改以获得延迟解。但是,即使对于时间相关的矢量场,对于静态矢量场使用亥姆霍兹定理也是正确的(参见例如[2]),因此需要解之间的关系,以便可以将延迟解转化为反之。在本文中,我们想建议,在大多数时候,Woodside在[3]中的数学形式主义中,有:1)有许多亥姆霍兹分解,都相等一致,2)每个自然都与时空结构有关,3)当我们将Helmholtz分解用于电磁势时,它等效于量规变换; 4)有一个自然的方法学标准,可根据为全球时空假定的结构选择量规; 5)Helmholtz分解是涉及量规的字段级别的体现。因此,当我们将延迟解与瞬时解联系起来时,我们要做的就是改变量规和时空。并且,如果亥姆霍兹分解与时空结构有关,并且等效于规范变换,则每个规范变换对于特定的时空都是自然的。这样,对于欧几里得空间的亥姆霍兹分解等效于库仑规范,对于明可夫斯基空间的亥姆霍兹分解等效于洛伦兹规范。这使我们认为,由不同量规定义的理论可能在数学上是等效的,因为它们可以通过量规转换进行关联,但它们在经验上不是等效的,因为由于时空的不同,它们具有非常不同的观测结果涉及的结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号