首页> 外文期刊>PLoS Genetics >Mismatch Repair Genes Mlh1 and Mlh3 Modify CAG Instability in Huntington's Disease Mice: Genome-Wide and Candidate Approaches
【24h】

Mismatch Repair Genes Mlh1 and Mlh3 Modify CAG Instability in Huntington's Disease Mice: Genome-Wide and Candidate Approaches

机译:错配修复基因 Mlh1 Mlh3 改变亨廷顿氏病小鼠的CAG不稳定性:全基因组和候选方法

获取原文
           

摘要

The Huntington's disease gene ( HTT ) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh~(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6. Hdh~(Q111) ) than on a 129 background (129. Hdh~(Q111) ). Linkage mapping in (B6x129). Hdh~(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6. Hdh~(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh~(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1–MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2–MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1 protein levels play an important role in driving of the efficiency of somatic expansions. Author Summary The expansion of a CAG repeat underlies Huntington's disease (HD), with longer CAG tracts giving rise to earlier onset and more severe disease. In individuals harboring a CAG expansion the repeat undergoes further somatic expansion over time, particularly in brain cells most susceptible to disease pathogenesis. Preventing this repeat lengthening may delay disease onset and/or slow progression. We are using mouse models of HD to identify the factors that modify the somatic expansion of the HD CAG repeat, as these may provide novel targets for therapeutic intervention. To identify genetic modifiers of somatic expansion in HD mouse models we have used both an unbiased genetic mapping approach in inbred mouse strains that exhibit different levels of somatic expansion, as well as targeted gene knockout approaches. Our results demonstrate that: 1) Mlh1 and Mlh3 genes, encoding components of the DNA mismatch repair pathway, are critical for somatic CAG expansion; 2) in the absence of somatic expansion the pathogenic process in the mouse is slowed; 3) MLH1 protein levels are likely to be a driver of the efficiency of somatic expansion. Together, our data provide new insight into the factors underlying the process of somatic expansion of the HD CAG repeat.
机译:亨廷顿舞蹈病基因(HTT)CAG重复突变经历了与发病机理相关的体细胞扩张。因此,体细胞扩张的修饰剂可以为靶向潜在突变的疗法提供途径,该方法可能适用于其他三核苷酸重复疾病。亨廷顿舞蹈病Hdh_(Q111)小鼠在C57BL / 6遗传背景(B6。Hdh〜(Q111))上的体细胞HTT CAG扩增水平高于129背景(129. Hdh〜(Q111))。 (B6x129)中的链接映射。 Hdh〜(Q111)F2杂交动物鉴定出一个单一的数量性状基因座,其纹状体扩张中的菌株特异性差异是潜在的,暗示错配修复(MMR)基因Mlh1是最可能的候选修饰子。穿越B6。将Hdh〜(Q111)小鼠置于Mlh1无效背景上表明Mlh1对于体细胞CAG扩增至关重要,并且是纹状体神经元中核亨廷顿蛋白积累的增强剂。在缺乏Mlh3基因的小鼠中,Hdh〜(Q111)的体细胞扩张也被取消,这暗示着MutLγ(MLH1-MLH3)复合体是体细胞扩张的关键驱动力。令人惊讶的是,编码MMR效应子蛋白的Mlh1和Mlh3基因与编码DNA错配识别复合物MutSβ(MSH2-MSH3)的Msh2和Msh3基因一样,对于体细胞扩张至关重要。 Mlh1基因座在B6和129菌株之间高度多态。虽然我们无法检测到B6和129 MLH1变体之间碱基错配或短重复重复修复活性的任何差异,但修复效率是MLH1剂量依赖性的。与B6小鼠相比,在129只小鼠中MLH1 mRNA和蛋白水平显着降低,这与这些菌株之间体细胞扩增差异的剂量敏感型MLH1依赖性DNA修复机制一致。总之,这些数据将Mlh1和Mlh3鉴定为HTT CAG不稳定性的新的关键遗传修饰物,指出Mlh1遗传变异可能是B6和129菌株不稳定性差异的来源,并暗示MLH1蛋白水平在驱动HTT CAG不稳定性方面起着重要作用。体细胞扩张的效率。作者摘要CAG重复序列的扩增是亨廷顿舞蹈病(HD)的基础,较长的CAG片段会导致更早发作和更严重的疾病。在具有CAG扩展的个体中,重复序列会随着时间的流逝进一步经历体细胞扩展,尤其是在最容易患病的发病机理的脑细胞中。防止这种重复延长可能会延迟疾病发作和/或进展缓慢。我们正在使用HD的小鼠模型来识别可改变HD CAG重复体细胞扩张的因子,因为这些可能为治疗干预提供新的靶点。为了鉴定HD小鼠模型中体细胞扩张的遗传修饰因子,我们在表现出不同水平体细胞扩张的近交小鼠品系中都使用了无偏见的遗传作图方法,以及靶向基因敲除方法。我们的结果表明:1)Mlh1和Mlh3基因,编码DNA错配修复途径的组成部分,对于体细胞CAG扩展至关重要; 2)在没有体细胞扩张的情况下,小鼠的致病过程会减慢; 3)MLH1蛋白水平可能是体细胞扩张效率的驱动力。总之,我们的数据为HD CAG重复体细胞扩张过程的基础因素提供了新的见解。

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号