首页> 外文期刊>PLoS Computational Biology >Cell Patterns Emerge from Coupled Chemical and Physical Fields with Cell Proliferation Dynamics: The Arabidopsis thaliana Root as a Study System
【24h】

Cell Patterns Emerge from Coupled Chemical and Physical Fields with Cell Proliferation Dynamics: The Arabidopsis thaliana Root as a Study System

机译:化学和物理场耦合的细胞模式与细胞增殖动力学一起出现:拟南芥根作为研究系统

获取原文
获取外文期刊封面目录资料

摘要

A central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical interaction triggers and responds to chemical and genetic processes that are specific to each biological system. We chose the root apical meristem of Arabidopsis thaliana to develop our dynamical model because this system is well studied at the molecular, genetic and cellular levels and has the key traits of multicellular stem-cell niches. We built a dynamical model that couples fundamental molecular mechanisms of the cell cycle to a tension physical field and to auxin dynamics, both of which are known to play a role in root development. We perform extensive numerical calculations that allow for quantitative comparison with experimental measurements that consider the cellular patterns at the root tip. Our model recovers, as an emergent pattern, the transition from proliferative to transition and elongation domains, characteristic of stem-cell niches in multicellular organisms. In addition, we successfully predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions. Our modeling platform may be extended to explicitly consider gene regulatory networks or to treat other developmental systems.
机译:发育生物学的中心问题是揭示干细胞维持其再生能力的机制,但同时又产生能够分化并达到其最终命运的子细胞,作为组织或器官的功能部分。在本文中,我们提出,在发育过程中,生长器官中的细胞会从细胞增殖的空间中产生的宏观物理场中获取位置信息。这种动力学相互作用触发并响应每个生物系统特有的化学和遗传过程。我们选择拟南芥的根尖分生组织来开发我们的动力学模型,因为该系统在分子,遗传和细胞水平上得到了很好的研究,并且具有多细胞干细胞生态位的关键特征。我们建立了一个动力学模型,该模型将细胞周期的基本分子机制与张力物理场和生长素动力学耦合在一起,而这两者均在根发育中起作用。我们进行广泛的数值计算,以便与考虑根尖细胞形态的实验测量结果进行定量比较。作为一种新兴模式,我们的模型从增殖域过渡到过渡和伸长域,这是多细胞生物中干细胞生态位的特征。此外,我们成功地预测了在各种生长素处理或改良的物理生长条件下预期发生的细胞模式改变。我们的建模平台可以扩展为明确考虑基因调控网络或治疗其他发育系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号