首页> 外文期刊>MBio >Reply to “Unrealistic Nonphysiological Amounts of Reagents and a Disregard for Published Literature”
【24h】

Reply to “Unrealistic Nonphysiological Amounts of Reagents and a Disregard for Published Literature”

机译:回复“试剂的非生理性非生理量和对已发表文献的无视”

获取原文
获取外文期刊封面目录资料

摘要

REPLY Thank you for the opportunity to respond to Professor Ginsburg’s communication regarding our mBio paper on combinatorial cationic and oxidative stress in Candida albicans ( 1 , 2 ). I am writing on behalf of my coauthors, who have helped with and aligned themselves with this response. Our main goal in this study was to examine the responses of C.?albicans to cationic and oxidative stress ( 1 ). Most of our experiments were performed in vitro using stressors and doses that have been used historically in the field ( 3 and references therein). We then tested the relevance to phagocytic attack. Professor Ginsburg queries the nature of the oxidative and cationic stresses that we employed. We imposed cationic and oxidative stress using Na~(+)and H_(2)O_(2), respectively, to permit comparison with previous publications that have examined osmotic and oxidative stress responses in C.?albicans by using these stressors. While K~(+)is more relevant to phagocytosis, it is worth remembering that Na~(+)stress is relevant to some host niches, such as the kidney. However, in our study, we showed that catalase is inhibited by both K~(+)and Na~(+)(Fig.?6B in reference 1 ). Professor Ginsburg questions the physiological relevance of the stress doses that we examined from the perspective of the phagocyte. Previous studies indicate that C.?albicans may be exposed to relatively high concentrations of reactive oxygen species (ROS) and cations in some host niches. In phagocytes, cation concentrations have been reported to reach the 0.2 to 0.3?M range ( 4 ). There are conflicting reports regarding ROS levels. Some studies suggest that steady-state H_(2)O_(2)levels may be relatively low (e.g., 5 ), while others suggest that ROS might reach high local concentrations within the phagosome during the oxidative burst ( 4 , 6 ). Frankly, because of the significant technological challenges associated with making such dynamic measurements ( 7 , 8 ), there is a lack of detailed information about the maximal concentrations to which fungal cells are exposed in phagocytes as a consequence of the oxidative burst and cationic fluxes. Indeed, Winterbourne states, “We do not yet have probes that can quantify cellular production of specific oxidants” ( 8 ). In our study, we examined the impact of combinatorial stress in vitro by using 5?mM H_(2)O_(2)and 1?M NaCl ( 1 ). We accept that these may lie outside normal physiological ranges. However, we performed these mechanistic studies having first shown that the synergistic effects of combinatorial oxidative and cationic stresses are observed over a wide range of concentrations (Fig.?2 in reference 1 ). Professor Ginsburg highlights the importance of the antimicrobial effects of hypochlorous acid. We did not examine this; it would be interesting to do so. However, it is worth considering the following points. As Professor Ginsburg points out, H_(2)O_(2)is converted to HOCl in the phagosome by myeloperoxidase (MPO). However, myeloperoxidase is reported to be less active at the alkaline pHs ( 9 , 10 ) that are reached in the phagosome during the oxidative burst ( 11 ). Also, although the extent to which MPO deficiency increases susceptibility to microbial infection is debated in the field (a substantial proportion of individuals with MPO deficiency are asymptomatic), it is clear that MPO deficiency does not lead to the severe susceptibility to infections observed in patients with chronic granulomatous disease, a disorder of the phagocyte NADPH oxidase ( 12 , 13 ). We observed that ectopic catalase expression partially rescues synergistic killing in vitro as well phagocytic killing ex vivo ( 1 ). These findings, together with the observation that catalase-deficient C.?albicans cells are more susceptible to neutrophil killing ( 14 ), support the idea that H_(2)O_(2)detoxification mechanisms provide protection for C.?albicans following phagocytosis. We also observed that the phagocytic killing of fungal cells is attenuated to similar extents by pharmacological inhibition of cationic fluxes or the oxidative burst (Fig.?8A in reference 1 ). This is consistent with our suggestion that the mechanisms of synergistic killing dissected in vitro are relevant to phagocytic killing. We did not use azide or aminotriazole to inhibit catalase inside cells. These inhibitors are not specific for catalase. For example, azide inhibits energy metabolism, which, interestingly, affects resistance of C.?albicans to antimicrobial peptides ( 15 ), and aminotriazole induces the amino acid starvation response and filamentation in C.?albicans ( 16 ). We are aware that the C.?albicans catalase gene responds to carbon source. Indeed, one of the citations quoted by Professor Ginsburg was published by my group ( 17 ). Actually, we reported this in an earlier paper ( 18 ). Of more relevance is the observation that catalase gene expression is induced following phagocytosis by PMNs ( 18 , 19 ). We remain convinced that C.?albicans is
机译:答复感谢您有机会回应金斯堡教授关于我们的mBio论文的交流,该论文涉及白色念珠菌的组合阳离子和氧化应激(1、2)。我是代表我的合著者写信的,这些合著者对这种回答有所帮助并与之保持一致。我们在这项研究中的主要目标是检查白色念珠菌对阳离子和氧化应激的反应(1)。我们的大多数实验都是使用应激源和本领域历史上一直使用的剂量(3和其中的参考文献)在体外进行的。然后,我们测试了与吞噬攻击的相关性。金斯堡教授质疑我们所采用的氧化和阳离子应力的性质。我们分别使用Na〜(+)和H_(2)O_(2)施加阳离子和氧化应激,以允许与以前的出版物进行比较,后者使用这些应激源研究了白色念珠菌的渗透和氧化应激反应。尽管K〜(+)与吞噬作用更相关,但值得记住的是Na〜(+)应激与某些宿主壁ni(如肾脏)有关。然而,在我们的研究中,我们表明过氧化氢酶同时受到K〜(+)和Na〜(+)的抑制(参考文献1中的图6B)。金斯堡教授质疑我们从吞噬细胞的角度对压力剂量的生理相关性。先前的研究表明白色念珠菌可能在某些宿主壁ni中暴露于相对较高浓度的活性氧(ROS)和阳离子中。据报道,在吞噬细胞中,阳离子浓度达到0.2至0.3?M范围(4)。关于ROS水平的报道相互矛盾。一些研究表明稳态H_(2)O_(2)水平可能相对较低(例如5),而另一些研究表明ROS在氧化爆发期间可能在吞噬体内达到较高的局部浓度(4,6)。坦白地说,由于与进行此类动态测量相关的重大技术挑战(7,8),因此缺乏有关由于氧化性爆发和阳离子通量导致吞噬细胞中真菌细胞所接触的最大浓度的详细信息。实际上,温特伯恩指出:“我们还没有能够量化细胞内特定氧化剂产生的探针”(8)。在我们的研究中,我们通过使用5?mM H_(2)O_(2)和1?M NaCl(1)检验了体外组合应力的影响。我们接受这些可能超出正常生理范围。但是,我们进行的这些机理研究首先表明,在很宽的浓度范围内都观察到了组合氧化和阳离子应力的协同作用(参考文献1中的图2)。金斯堡教授强调了次氯酸抗菌作用的重要性。我们没有对此进行检查;这样做会很有趣。但是,值得考虑以下几点。正如Ginsburg教授指出的,髓过氧化物酶(MPO)将H_(2)O_(2)在吞噬体中转化为HOCl。然而,据报道,髓过氧化物酶在氧化性爆发期间吞噬体中达到的碱性pH值(9、10)下活性较低(11)。同样,尽管在现场对MPO缺乏症在多大程度上增加了对微生物感染的易感性(有很大比例的MPO缺乏症患者无症状),但很明显,MPO缺乏症不会导致患者对感染的严重易感性患有慢性肉芽肿病,吞噬细胞NADPH氧化酶异常(12,13)。我们观察到,异位过氧化氢酶的表达部分拯救了体外的协同杀伤以及离体的吞噬杀伤(1)。这些发现,加上过氧化氢酶缺陷的白色念珠菌细胞更容易中性粒细胞杀伤的观察(14),支持了H_(2)O_(2)解毒机制为吞噬作用后的白色念珠菌提供保护的观点。我们还观察到,通过药理学上抑制阳离子通量或氧化性爆发,真菌细胞的吞噬性杀伤被减弱到相似的程度(参考文献1中的图8A)。这与我们的建议一致,即体外解剖的协同杀伤机制与吞噬杀伤有关。我们没有使用叠氮化物或氨基三唑来抑制细胞内的过氧化氢酶。这些抑制剂对过氧化氢酶不是特异性的。例如,叠氮化物抑制能量代谢,这有趣地影响了白色念珠菌对抗菌肽的抗性(15),而氨基三唑诱导白色念珠菌中的氨基酸饥饿反应和丝状化(16)。我们知道白色念珠菌过氧化氢酶基因对碳源有反应。确实,金斯伯格教授所引用的引文之一是由我的研究小组发表的(17)。实际上,我们在较早的论文中对此进行了报道(18)。更为相关的是过氧化氢酶吞噬后会诱导过氧化氢酶基因表达(18,19)。我们仍然坚信白色念珠菌是

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号