首页> 外文期刊>G3: Genes, Genomes, Genetics >Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast
【24h】

Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast

机译:全球健身剖析确定裂变酵母中的砷和镉耐受机制

获取原文
获取外文期刊封面目录资料

摘要

Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae , underscoring the utility of analyzing toxic metal defense mechanisms in both organisms.
机译:重金属和准金属,例如镉[Cd(II)]和砷[As(III)]是广泛的环境毒物,可对人类造成多种不良健康影响。但是,对金属诱导的细胞毒性和致癌作用以及排毒和耐受途径的分子机制尚不完全了解。在这里,我们通过条形码测序使用整体适应性分析来定量调查粟酒裂殖酵母单倍体缺失基因组中赋予镉或砷耐受性的基因。我们确定了镉抗性所需的106个基因和砷抗性所需的110个基因,其中36个基因高度重叠。这36个基因的一个子集几乎涵盖了将硫掺入螯合镉和砷的富含半胱氨酸的谷胱甘肽和植物螯合素肽所需的所有蛋白质。 Mms19的要求是由于它在指导铁-硫簇组装成亚硫酸盐还原酶而不是促进DNA修复中的作用来解释的,因为DNA损伤反应基因并未富集镉或砷耐受性所需的基因。泛醌,西罗血红素和吡x醛5'-磷酸的生物合成也被认为对Cd / As耐受性至关重要。砷特异性途径包括前折叠蛋白介导的未折叠蛋白的组装和靶向过氧化物酶体的蛋白,而镉特异性途径包括质膜和液泡转运蛋白,以及控制细胞核素表达的Spt–Ada–Gcn5-乙酰基转移酶(SAGA)转录共激活因子。镉耐受所需的关键基因。在芽孢的酿酒酵母中进行相应的筛选时,存在明显的差异,这突出了分析两种生物中有毒金属防御机制的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号