首页> 外文期刊>International Journal of Computational and Theoretical Chemistry >Importance of Hydride-Hydride Interaction in the Stabilization of LiH, NaH, KH, LiAlH4, NaAlH4, and Li3AlH6 as Solid-State Systems for Hydrogen Storage
【24h】

Importance of Hydride-Hydride Interaction in the Stabilization of LiH, NaH, KH, LiAlH4, NaAlH4, and Li3AlH6 as Solid-State Systems for Hydrogen Storage

机译:氢化物-氢化物相互作用对稳定LiH,NaH,KH,LiAlH 4 ,NaAlH 4 和Li 3 AlH 的稳定性6 作为固态储氢系统

获取原文
获取外文期刊封面目录资料

摘要

The solid-state structures of LiH, NaH, KH, LiAlH_(4), NaAlH_(4) and Li_(3)AlH_(6) have been explored in details as potential hydrogen-storage materials using computational electron density methods; the full-potential linearized augmented plane wave (FPLAPW) method plus local orbital (FPLAPW+lo) embodied in the WIEN2k package code. Topological analysis of their DFT-computed electron densities in tandem with Bader’s Atoms in Molecules (AIM) theory reveals a plethora of stabilizing interactions some of which are really strong. With the exception of NaH and KH, which do not contain the hydride-hydride bonding, the rest of the metal hydrides; LiH, LiAlH_(4), NaAlH_(4) and Li_(3)AlH_(6) show an increasing number of hydride-hydride interactions that contribute to the stabilization of their three-dimensional (3-D) solid-state structures. Even though these hydride-hydride interactions are weaker compared to the M-H counterparts, their multiplicity greatly contributes to the stability of these metal hydrides. Results from their electron density studies reveal that the number of hydride-hydride interactions in these binary and complex metal hydrides increase with the complexity of the solid-state structures. LiAlH_(4) is more stable compared to NaAlH_(4), Li_(3)AlH_(6), and LiH. NaH and KH were seen to be the least stable solid-state structures. It is suggested that the presence of these hydride-hydride interactions play a significant role in the mediation or understanding of the reaction mechanism leading to the release of hydrogen from these solid-state systems.
机译:LiH,NaH,KH,LiAlH_(4),NaAlH_(4)和Li_(3)AlH_(6)的固态结构已通过计算电子密度方法作为潜在的储氢材料进行了详细研究; WIEN2k封装代码中包含的全势线性化增强平面波(FPLAPW)方法和局部轨道(FPLAPW + lo)。通过DFT计算的电子密度与Bader分子原子(AIM)理论的拓扑分析表明,存在大量稳定的相互作用,其中一些相互作用确实很强。除了不包含氢化物-氢化物键的NaH和KH,其余的金属氢化物; LiH,LiAlH_(4),NaAlH_(4)和Li_(3)AlH_(6)显示出越来越多的氢化物-氢化物相互作用,有助于稳定其三维(3-D)固态结构。尽管这些氢化物-氢化物的相互作用比M-H对应物弱,但它们的多样性极大地有助于这些金属氢化物的稳定性。他们的电子密度研究结果表明,这些二元和复杂金属氢化物中氢化物-氢化物相互作用的数量随着固态结构的复杂性而增加。与NaAlH_(4),Li_(3)AlH_(6)和LiH相比,LiAlH_(4)更稳定。 NaH和KH被认为是最不稳定的固态结构。这些氢化物-氢化物相互作用的存在在介导或理解导致从这些固态系统释放氢的反应机理中起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号