首页> 外文期刊>Atmospheric chemistry and physics >Effects of aerosol–radiation interaction on precipitation during biomass-burning season in East China
【24h】

Effects of aerosol–radiation interaction on precipitation during biomass-burning season in East China

机译:东部地区气溶胶-辐射相互作用对生物量燃烧季节降水的影响

获取原文
获取外文期刊封面目录资料

摘要

Biomass burning is a main source for primary carbonaceous particles in the atmosphere and acts as a crucial factor that alters Earth's energy budget and balance. It is also an important factor influencing air quality, regional climate and sustainability in the domain of Pan-Eurasian Experiment (PEEX). During the exceptionally intense agricultural fire season in mid-June 2012, accompanied by rapidly deteriorating air quality, a series of meteorological anomalies was observed, including a large decline in near-surface air temperature, spatial shifts and changes in precipitation in Jiangsu province of East China. To explore the underlying processes that link air pollution to weather modification, we conducted a numerical study with parallel simulations using the fully coupled meteorology–chemistry model WRF-Chem with a high-resolution emission inventory for agricultural fires. Evaluation of the modeling results with available ground-based measurements and satellite retrievals showed that this model was able to reproduce the magnitude and spatial variations of fire-induced air pollution. During the biomass-burning event in mid-June 2012, intensive emission of absorbing aerosols trapped a considerable part of solar radiation in the atmosphere and reduced incident radiation reaching the surface on a regional scale, followed by lowered surface sensible and latent heat fluxes. The perturbed energy balance and re-allocation gave rise to substantial adjustments in vertical temperature stratification, namely surface cooling and upper-air heating. Furthermore, an intimate link between temperature profile and small-scale processes like turbulent mixing and entrainment led to distinct changes in precipitation. On the one hand, by stabilizing the atmosphere below and reducing the surface flux, black carbon-laden plumes tended to dissipate daytime cloud and suppress the convective precipitation over Nanjing. On the other hand, heating aloft increased upper-level convective activity and then favored convergence carrying in moist air, thereby enhancing the nocturnal precipitation in the downwind areas of the biomass-burning plumes.
机译:生物质燃烧是大气中主要碳质颗粒的主要来源,并且是改变地球能源预算和平衡的关键因素。在泛欧实验(PEEX)领域,它也是影响空气质量,区域气候和可持续性的重要因素。在2012年6月中旬异常强烈的农业大火季节,伴随着空气质量迅速恶化,观测到一系列气象异常,包括江苏东部的近地表气温大幅下降,空间变化和降水变化。中国。为了探索将空气污染与天气变化联系起来的潜在过程,我们使用完全耦合的气象化学模型WRF-Chem与高分辨率的农业火灾排放清单进行了并行模拟的数值研究。利用可用的地面测量和卫星检索对建模结果进行的评估表明,该模型能够再现火灾引起的空气污染的大小和空间变化。在2012年6月中旬发生的生物质燃烧事件中,大量吸收性气溶胶的排放将相当一部分太阳辐射捕获在大气中,并减少了区域范围内到达地面的入射辐射,其次是降低了表面的感热通量和潜热通量。扰动的能量平衡和重新分配导致垂直温度分层的实质性调整,即表面冷却和高空加热。此外,温度曲线与小规模过程(如湍流混合和夹带)之间的密切联系导致了降水的明显变化。一方面,通过稳定下方的大气层并减少地表通量,黑色碳烟羽趋于消散白天的云层并抑制南京上空的对流降水。另一方面,高空加热增加了高层对流活动,然后有利于在潮湿空气中携带会聚,从而增强了生物质燃烧烟羽顺风区域的夜间降水。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号