首页> 外文期刊>BMC Systems Biology >Linking physiologically-based pharmacokinetic and genome-scale metabolic networks to understand estradiol biology
【24h】

Linking physiologically-based pharmacokinetic and genome-scale metabolic networks to understand estradiol biology

机译:链接基于生理的药代动力学和基因组规模的代谢网络以了解雌二醇生物学

获取原文
获取外文期刊封面目录资料

摘要

Estrogen is a vital hormone that regulates many biological functions within the body. These include roles in the development of the secondary sexual organs in both sexes, plus uterine angiogenesis and proliferation during the menstrual cycle and pregnancy in women. The varied biological roles of estrogens in human health also make them a therapeutic target for contraception, mitigation of the adverse effects of the menopause, and treatment of estrogen-responsive tumours. In addition, endogenous (e.g. genetic variation) and external (e.g. exposure to estrogen-like chemicals) factors are known to impact estrogen biology. To understand how these multiple?factors interact to determine an individual’s response to therapy is complex, and may be best approached through a systems approach. We present a physiologically-based pharmacokinetic model (PBPK) of estradiol, and validate it against plasma kinetics in humans following intravenous and oral exposure. We extend this model by replacing the intrinsic clearance term with: a detailed kinetic model of estrogen metabolism in the liver; or, a genome-scale model of liver metabolism. Both models were validated by their ability to reproduce clinical data on estradiol exposure. We hypothesise that the enhanced mechanistic information contained within these models will lead to more robust predictions of the biological phenotype that emerges from the complex interactions between estrogens and the body. To demonstrate the utility of these models we examine the known drug-drug interactions between phenytoin and oral estradiol. We are able to reproduce the approximate 50% reduction in area under the concentration-time curve for estradiol associated with this interaction. Importantly, the inclusion of a genome-scale metabolic model allows the prediction of this interaction without directly specifying it within the model. In addition, we predict that PXR activation by drugs results in an enhanced ability of the liver to excrete glucose. This has important implications for the relationship between drug treatment and metabolic syndrome. We demonstrate how the novel coupling of PBPK models with genome-scale metabolic networks has the potential to aid prediction of drug action, including both drug-drug interactions and changes to the metabolic landscape that may predispose an individual to disease development.
机译:雌激素是调节体内许多生物学功能的重要激素。这些包括在男女两性次要器官的发育中的作用,以及妇女在月经周期和怀孕期间子宫血管生成和增殖。雌激素在人类健康中的多种生物学作用也使其成为避孕,减轻更年期不良影响以及治疗雌激素反应性肿瘤的治疗靶标。另外,已知内源性(例如遗传变异)和外部性(例如暴露于类似雌激素的化学物质)因素会影响雌激素生物学。要了解这些多种因素如何相互作用以确定一个人对治疗的反应是很复杂的,最好通过系统方法来解决。我们提出了一种基于生理的雌二醇药代动力学模型(PBPK),并针对静脉和口服暴露后的人体血浆动力学进行了验证。我们通过用以下方式代替固有清除率项来扩展该模型:肝脏中雌激素代谢的详细动力学模型;或肝脏代谢的基因组规模模型。两种模型均通过其再现有关雌二醇暴露量的临床数据的能力得到验证。我们假设这些模型中包含的增强的机械信息将导致对生物表型的更可靠的预测,该表型是由雌激素与身体之间复杂的相互作用产生的。为了证明这些模型的实用性,我们研究了苯妥英钠与口服雌二醇之间已知的药物相互作用。我们能够在浓度-时间曲线下再现与这种相互作用相关的雌二醇的面积减少约50%。重要的是,通过包含基因组规模的代谢模型,可以预测这种相互作用,而无需在模型中直接指定。此外,我们预测药物对PXR的激活会导致肝脏排泄葡萄糖的能力增强。这对药物治疗和代谢综合征之间的关系具有重要意义。我们证明了PBPK模型与基因组规模的代谢网络之间的新型耦合如何有助于预测药物作用,包括药物相互作用和可能使个体易患疾病的代谢态势变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号