首页> 外文期刊>Biotechnology for Biofuels >A framework for accelerated phototrophic bioprocess development: integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design
【24h】

A framework for accelerated phototrophic bioprocess development: integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design

机译:促进光养生物过程发展的框架:并行化微尺度培养,实验室自动化和克里格辅助实验设计的集成

获取原文
获取外文期刊封面目录资料

摘要

BackgroundEven though microalgae-derived biodiesel has regained interest within the last decade, industrial production is still challenging for economic reasons. Besides reactor design, as well as value chain and strain engineering, laborious and slow early-stage parameter optimization represents a major drawback. ResultsThe present study introduces a framework for the accelerated development of phototrophic bioprocesses. A state-of-the-art micro-photobioreactor supported by a liquid-handling robot for automated medium preparation and product quantification was used. To take full advantage of the technology’s experimental capacity, Kriging-assisted experimental design was integrated to enable highly efficient execution of screening applications. The resulting platform was used for medium optimization of a lipid production process using Chlorella vulgaris toward maximum volumetric productivity. Within only four experimental rounds, lipid production was increased approximately threefold to 212?±?11?mg?L?1?d?1. Besides nitrogen availability as a key parameter, magnesium, calcium and various trace elements were shown to be of crucial importance. Here, synergistic multi-parameter interactions as revealed by the experimental design introduced significant further optimization potential. ConclusionsThe integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design proved to be a fruitful tool for the accelerated development of phototrophic bioprocesses. By means of the proposed technology, the targeted optimization task was conducted in a very timely and material-efficient manner.
机译:背景技术尽管在过去的十年中,微藻衍生的生物柴油已重新引起人们的兴趣,但出于经济原因,工业生产仍面临挑战。除了反应堆设计以及价值链和应变工程之外,费力且缓慢的早期参数优化还存在主要缺点。结果本研究介绍了促进光养生物过程发展的框架。使用了由液体处理机器人支持的最新型微型光生物反应器,用于自动制备培养基和定量产品。为了充分利用该技术的实验能力,集成了Kriging辅助的实验设计,以高效执行筛选应用程序。所得平台用于使用小球藻实现最大容积生产率的脂质生产过程的培养基优化。在仅四轮实验中,脂质的产量增加了约三倍,达到212?±?11?mg?L ?1 ?d ?1 。除了氮的可利用性作为关键参数外,镁,钙和各种微量元素也显示出至关重要的作用。在这里,实验设计揭示了协同的多参数交互作用,从而带来了显着的进一步优化潜力。结论并行化微型培养,实验室自动化和Kriging辅助实验设计的集成被证明是加速光养生物过程发展的有效工具。通过所提出的技术,可以非常及时和节省材料地进行目标优化任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号