首页> 外文期刊>Data & Knowledge Engineering >An ontology knowledge inspection methodology for quality assessment and continuous improvement
【24h】

An ontology knowledge inspection methodology for quality assessment and continuous improvement

机译:本体知识检验方法质量评估和持续改进

获取原文
获取原文并翻译 | 示例

摘要

Ontology-learning methods were introduced in the knowledge engineering area to automatically build ontologies from natural language texts related to a domain. Despite the initial appeal of these methods, automatically generated ontologies may have errors, inconsistencies, and a poor design quality, all of which must be manually fixed, in order to maintain the validity and usefulness of automated output. In this work, we propose a methodology to assess ontologies quality (quantitatively and graphically) and to fix ontology inconsistencies minimizing design defects. The proposed methodology is based on the Deming cycle and is grounded on quality standards that proved effective in the software engineering domain and present high potential to be extended to knowledge engineering quality management. This paper demonstrates that software engineering quality assessment approaches and techniques can be successfully extended and applied to the ontology-fixing and quality improvement problem. The proposed methodology was validated in a testing ontology, by ontology design quality comparison between a manually created and automatically generated ontology.
机译:在知识工程领域介绍了本体学习方法,以自动构建与域相关的自然语言文本的本体。尽管这些方法的初始吸引力,但自动生成的本体可能具有错误,不一致和较差的设计质量,所有这些都必须手动修复,以便保持自动输出的有效性和有用性。在这项工作中,我们提出了一种方法来评估本体质量(定量和图形)并确定本体不一致最小化设计缺陷。该提出的方法基于脱梦周期,基于软件工程领域证明有效的质量标准,并延长了知识工程质量管理的高潜力。本文展示了软件工程质量评估方法和技术可以成功扩展和应用于本体定影和质量改进问题。通过在手动创建和自动生成本体之间的本体设计质量比较,在测试本体中验证了所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号