首页> 外文期刊>Data & Knowledge Engineering >INSiGHT: A system to detect violent extremist radicalization trajectories in dynamic graphs
【24h】

INSiGHT: A system to detect violent extremist radicalization trajectories in dynamic graphs

机译:INSiGHT:一种在动态图中检测暴力极端主义激进化轨迹的系统

获取原文
获取原文并翻译 | 示例

摘要

The number and lethality of violent extremist plots motivated by the Salafi-jihadist ideology have been growing for nearly the last decade in many parts of the world including both the U.S and Western Europe. While detecting the radicalization of violent extremists is a key component in preventing future terrorist attacks, it remains a significant challenge to law enforcement due to the issues of both scale and dynamics. We propose the development of a radicalization trend detection system as a risk assessment assistance technology that relies on data mined from public data and government databases for individuals who exhibit risk indicators for extremist violence, and enables law enforcement to monitor those individuals at the scope and scale that is lawful, and accounts for the dynamic indicative behaviors of the individuals and their associates rigorously and automatically. We frame our approach to monitoring the radicalization pattern of behaviors as a unique dynamic graph pattern matching problem, and develop a technology called INSiGHT (InvestigativeSearch forGraph-Trajectories) to help identify individuals or small groups with conforming subgraphs to a radicalization query pattern, and follow the match trajectories over time. This paper presents the overall INSiGHT architecture and is aimed at assisting law enforcement and intelligence agencies in monitoring and screening for those individuals whose behaviors indicate a significant risk for violence, and allow for the better prioritization of limited investigative resources. We demonstrated the performance of INSiGHT on a variety of datasets, to include small synthetic radicalization-specific datasets and a real behavioral dataset of time-stamped radicalization indicators of recent U.S. violent extremists.
机译:在过去的近十年中,包括美国和西欧在内的世界许多地区,由萨拉菲圣战分子意识形态引发的暴力极端主义阴谋的数量和杀伤力一直在增长。虽然发现暴力极端主义分子的激进是防止未来发生恐怖袭击的关键因素,但由于规模和动态问题,它仍然是执法方面的重大挑战。我们建议开发一种激进趋势检测系统,作为一种风险评估辅助技术,该技术依赖于从公开数据和政府数据库中获取的针对表现出极端暴力风险指标的个人的数据,并使执法部门能够在范围和规模上监控这些个人这是合法的,并且会严格,自动地解决个人及其员工的动态指示行为。我们将监控行为激进模式的方法作为一种独特的动态图模式匹配问题进行框架设计,并开发了一种称为INSiGHT(针对图轨迹的InvestigativeSearch)技术,以帮助识别带有激进查询模式的子图的个人或小组,并遵循比赛轨迹随着时间的推移。本文介绍了整个INSiGHT体系结构,旨在协助执法和情报机构监视和筛选那些行为表明存在严重暴力风险的个人,并更好地确定有限的调查资源的优先级。我们在各种数据集上展示了INSiGHT的性能,包括小型合成激进特定数据集和最近的美国暴力极端主义者带有时间戳记的激进指标的真实行为数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号