首页> 外文期刊>Data & Knowledge Engineering >An improved methodology on information distillation by mining program source code
【24h】

An improved methodology on information distillation by mining program source code

机译:一种通过挖掘程序源代码进行信息蒸馏的改进方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a methodology for knowledge acquisition from source code. We use data mining to support semi-automated software maintenance and comprehension and provide practical insights into systems specifics, assuming one has limited prior familiarity with these systems. We propose a methodology and an associated model for extracting information from object oriented code by applying clustering and association rules mining. K-means clustering produces system overviews and deductions, which support further employment of an improved version of MMS Apriori that identifies hidden relationships between classes, methods and member data. The methodology is evaluated on an industrial case study, results are discussed and conclusions are drawn.
机译:本文提出了一种从源代码获取知识的方法。我们使用数据挖掘来支持半自动软件维护和理解,并提供对系统细节的实用见解,前提是人们对这些系统的先验知识有限。我们提出了一种通过应用聚类和关联规则挖掘从面向对象代码中提取信息的方法和相关模型。 K-means聚类产生系统概述和推论,这支持进一步使用MMS Apriori的改进版本,该版本可识别类,方法和成员数据之间的隐藏关系。在工业案例研究中对该方法进行了评估,讨论了结果并得出结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号