首页> 外文期刊>Data & Knowledge Engineering >An efficient sanitization algorithm for balancing information privacy and knowledge discovery in association patterns mining
【24h】

An efficient sanitization algorithm for balancing information privacy and knowledge discovery in association patterns mining

机译:一种有效的消毒算法,用于在关联模式挖掘中平衡信息隐私和知识发现

获取原文
获取原文并翻译 | 示例

摘要

Discovering frequent patterns in large databases is one of the most studied problems in data mining, since it can yield substantial commercial benefits. However, some sensitive patterns with security considerations may compromise privacy. In this paper, we aim to determine appropriate balance between need for privacy and information discovery in frequent patterns. A novel method to modify databases for hiding sensitive patterns is proposed in this paper. Multiplying the original database by a sanitization matrix yields a sanitized database with private content. In addition, two probabilities are introduced to oppose against the recovery of sensitive patterns and to reduce the degree of hiding non-sensitive patterns in the sanitized database. The complexity analysis and the security discussion of the proposed sanitization process are provided. The results from a series of experiments performed to show the efficiency and effectiveness of this approach are described.
机译:在大型数据库中发现频繁的模式是数据挖掘中研究最多的问题之一,因为它可以产生可观的商业利益。但是,一些出于安全考虑的敏感模式可能会损害隐私。在本文中,我们旨在确定隐私需求与频繁模式下的信息发现之间的适当平衡。提出了一种新颖的数据库修改方法,用于隐藏敏感模式。将原始数据库乘以清理矩阵会得到带有私有内容的清理数据库。另外,引入了两个概率来反对恢复敏感模式并降低已清理数据库中非敏感模式的隐藏程度。提供了提议的消毒过程的复杂性分析和安全性讨论。描述了一系列实验的结果,这些结果表明了这种方法的效率和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号