首页> 外文期刊>Data & Knowledge Engineering >A Bayesian model for disclosure control in statistical databases
【24h】

A Bayesian model for disclosure control in statistical databases

机译:统计数据库中披露控制的贝叶斯模型

获取原文
获取原文并翻译 | 示例

摘要

The paper proposes a novel approach for on-line max and min query auditing, in which a Bayesian network addresses disclosures based on probabilistic inferences that can be drawn from released data. In the literature, on-line max and min auditing has been addressed with some restrictive assumptions, primarily that sensitive values must be all distinct and the sensitive field has a uniform distribution. We remove these limitations and propose a model able to: provide a graphical representation of user knowledge; deal with the implicit delivery of information that derives from denying the answer to a query; and capture user background knowledge. Finally, we discuss the results of experiments aimed at assessing the scalability of the approach, in terms of response time and size of the conditional probability table, and the usefulness of the auditor system, in terms of probability to deny.
机译:本文提出了一种用于在线最大和最小查询审计的新颖方法,其中贝叶斯网络基于可以从已发布数据中得出的概率推断来解决披露问题。在文献中,在线最大和最小审计已通过一些限制性假设来解决,主要是敏感值必须全部不同且敏感字段具有统一的分布。我们消除了这些限制,并提出了一个模型,该模型能够:提供用户知识的图形表示;处理因拒绝查询答案而产生的隐式信息传递;并捕获用户背景知识。最后,我们讨论了旨在根据响应时间和条件概率表的大小评估该方法的可伸缩性的实验结果,以及就拒绝概率而言评估审核员系统的有效性的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号