首页> 外文期刊>Data & Knowledge Engineering >Privately detecting bursts in streaming, distributed time series data
【24h】

Privately detecting bursts in streaming, distributed time series data

机译:私下检测流式,分布式时间序列数据中的突发

获取原文
获取原文并翻译 | 示例

摘要

Surprisingly, privacy preservation in the context of streaming data has received limited attention from computer scientists. In this paper, we consider privacy preservation in the context of independently owned, distributed data streams. Specifically, we want to protect the privacy of each individual participant's data stream while identifying bursts that exist across participant streams. We define two types of privacy breaches, data breaches and envelope breaches. In order to protect individual data, each participant transforms large subsets of the stream into small vectors that approximate the stream. These small vectors are calculated by summing coefficients of wavelet transforms at different resolutions. The participants share their vectors using bursty, self-eliminating noise. The combined participant vectors can then be used to detect bursts. We find that our approach leads to accurate burst detection results with reduced communication costs. We demonstrate these findings using both real and synthetic data.
机译:出乎意料的是,流数据上下文中的隐私保护受到计算机科学家的有限关注。在本文中,我们考虑在独立拥有的分布式数据流的上下文中保护隐私。具体来说,我们希望在识别参与者流中存在的突发时,保护每个参与者数据流的隐私。我们定义了两种类型的隐私违规行为,即数据违规行为和信封违规行为。为了保护单个数据,每个参与者都将流的大子集转换为近似于流的小向量。这些小向量是通过将不同分辨率下的小波变换系数相加得出的。参与者使用爆发性的自消除噪声共享其向量。然后可以将组合的参与者矢量用于检测突发。我们发现,我们的方法可导致准确的突发检测结果并降低通信成本。我们使用真实和综合数据来证明这些发现。

著录项

  • 来源
    《Data & Knowledge Engineering》 |2009年第6期|509-530|共22页
  • 作者

    Lisa Singh; Mehmet Sayal;

  • 作者单位

    Department of Computer Science, Georgetown University, 37th and V Streets, NW, St. Mary's - 3rd Floor, Washington, DC 20057, United States;

    Hewlett Packard Company, Hewlett-Packard Labs, 1501 Page Mill Road, Palo Alto, CA 94304, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    privacy preservation; burst detection; streaming data;

    机译:隐私保护;突发检测;流数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号