首页> 外文期刊>Data & Knowledge Engineering >A hierarchical semantic-based distance for nominal histogram comparison
【24h】

A hierarchical semantic-based distance for nominal histogram comparison

机译:用于名义直方图比较的基于语义的分层距离

获取原文
获取原文并翻译 | 示例

摘要

We propose a new distance called Hierarchical Semantic-Based Distance (HSBD), devoted to the comparison of nominal histograms equipped with a dissimilarity matrix providing the semantic correlations between the bins. The computation of this distance is based on a hierarchical strategy, progressively merging the considered instances (and their bins) according to their semantic proximity. For each level of this hierarchy, a standard bin-to-bin distance is computed between the corresponding pair of histograms. In order to obtain the proposed distance, these bin-to-bin distances are then fused by taking into account the semantic coherency of their associated level. From this modus operandi, the proposed distance can handle histograms which are generally compared thanks to cross-bin distances. It preserves the advantages of such cross-bin distances (namely robustness to histogram translation and histogram bin size issues), while inheriting the low computational cost of bin-to-bin distances. Validations in the context of geographical data classification emphasize the relevance and usefulness of the proposed distance.
机译:我们提出了一种新的距离,称为“基于层次的语义距离”(HSBD),该距离专门用于标称直方图的比较,标称直方图配备了提供仓位之间语义相关性的不相似矩阵。该距离的计算基于分层策略,根据它们的语义接近度逐渐合并所考虑的实例(及其容器)。对于此层次结构的每个级别,在相应的直方图对之间计算标准的bin到bin距离。为了获得建议的距离,这些bin-to-bin距离随后通过考虑其关联级别的语义一致性来融合。从这种作法上,建议的距离可以处理直方图,直方图通常由于交叉仓距离而得到比较。它保留了此类跨仓距离的优势(即对直方图平移和柱状图仓大小问题的鲁棒性),同时继承了仓仓间距离的低计算成本。在地理数据分类的背景下进行的验证强调了拟议距离的相关性和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号