首页> 外文期刊>Data & Knowledge Engineering >Extraction of fuzzy rules from fuzzy decision trees: An axiomatic fuzzy sets (AFS) approach
【24h】

Extraction of fuzzy rules from fuzzy decision trees: An axiomatic fuzzy sets (AFS) approach

机译:从模糊决策树中提取模糊规则:公理模糊集(AFS)方法

获取原文
获取原文并翻译 | 示例

摘要

In this study, we introduce a new type of coherence membership function to describe fuzzy concepts, which builds upon the theoretical findings of the Axiomatic Fuzzy Set (AFS) theory. This type of membership function embraces both the factor of fuzziness (by capturing subjective imprecision) and randomness (by referring to the objective uncertainty) and treats both of them in a consistent manner. Furthermore we propose a method to construct a fuzzy rule-based classifier using coherence membership functions. Given the theoretical developments presented there, the resulting classification systems are referred to as AFS classifiers. The proposed algorithm consists of three major steps: (a) generating fuzzy decision trees by assuming some level of specificity (detailed view) quantified in terms of threshold; (b) pruning the obtained rule-base; and (c) determining the optimal threshold resulting in a final tree. Compared with other fuzzy classifiers, the AFS classifier exhibits several essential advantages being of practical relevance. In particular, the relevance of classification results is quantified by associated confidence levels. Furthermore the proposed algorithm can be applied to data sets with mixed data type attributes. We have experimented with various data commonly present in the literature and compared the results with that of SVM, KNN, C4.5, Fuzzy Decision Trees (FDTs). Fuzzy SLIQ Decision Tree (FS-DT), FARC-HD and FURIA. It has been shown that the accuracy is higher than that being obtained by other methods. The results of statistical tests supporting comparative analysis show that the proposed algorithm performs significantly better than FDTs, FS-DT, KNN and C4.5.
机译:在这项研究中,我们引入了一种新类型的相干隶属度函数来描述模糊概念,该函数以公理模糊集(AFS)理论的理论发现为基础。这种类型的隶属度函数同时包含了模糊性(通过捕获主观不精确性)和随机性(通过提及客观不确定性)因素,并以一致的方式对待它们。此外,我们提出了一种使用相干隶属度函数构造基于模糊规则的分类器的方法。考虑到此处提出的理论发展,所得分类系统称为AFS分类器。所提出的算法包括三个主要步骤:(a)通过假设根据阈值量化的某种程度的特异性(详细视图)来生成模糊决策树; (b)修剪获得的规则库; (c)确定产生最终树的最佳阈值。与其他模糊分类器相比,AFS分类器具有一些与实际相关的基本优点。特别是,分类结果的相关性通过相关的置信度来量化。此外,所提出的算法可以应用于具有混合数据类型属性的数据集。我们已经对文献中常见的各种数据进行了实验,并将结果与​​SVM,KNN,C4.5,模糊决策树(FDT)进行了比较。模糊SLIQ决策树(FS-DT),FARC-HD和FURIA。已经表明,该精度高于通过其他方法获得的精度。支持比较分析的统计测试结果表明,该算法的性能明显优于FDT,FS-DT,KNN和C4.5。

著录项

  • 来源
    《Data & Knowledge Engineering》 |2013年第3期|1-25|共25页
  • 作者单位

    Research Center of Information and Control Dalian University of Technology, Dalian 116024, PR China Department of Mathematics Dalian Maritime University, Dalian 116026, PR China;

    Research Center of Information and Control Dalian University of Technology, Dalian 116024, PR China;

    Department of Electrical and Computer Engineering University of Alberta, Edmonton, Canada T6C 2C7, Department of Electrical and Computer Engineering Faculty of Engineering, King Abdulaziz University Jeddah, 21589. Saudi Arabia and Systems Research Institute, Polish Academy of Sciences Warsaw, Poland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fuzzy decision trees; Fuzzy rules; Afs fuzzy logic; Knowledge representation; Comparative analysis;

    机译:模糊决策树;模糊规则;AFS模糊逻辑;知识表示;对比分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号