首页> 外文期刊>Data & Knowledge Engineering >The NOBH-tree: Improving in-memory metric access methods by using metric hyperplanes with non-overlapping nodes
【24h】

The NOBH-tree: Improving in-memory metric access methods by using metric hyperplanes with non-overlapping nodes

机译:NOBH树:通过使用具有不重叠节点的度量标准超平面来改进内存中的度量标准访问方法

获取原文
获取原文并翻译 | 示例

摘要

In order to speed up similarity query evaluation, index structures divide the target dataset into subsets aimed at finding the answer without examining the entire dataset. As the complexity of the data types handled by modern applications keeps growing, searching by similarity becomes increasingly interesting, that makes the Metric Space Theory as the theoretical base to build the structures employed to index complex data. Also, as the main memory capacity grows and the price decreases, increasingly larger databases can be completely indexed in the main-memory. Thus, more and more applications require the data base management systems to quickly build indexes that can take advantage of memory-based indexes. In this paper, we propose a new family of metric access methods, called NOBH-trees that allow a non-overlapping division of the data space, combining Voronoi-shaped with ball-shaped regions to partition the metric space. We show how to query the subspaces divided by the hyperplanes and how the distance from any element to the hyperplane can be evaluated. The results obtained from the experiments show that the new MAM achieves better performance than the existing ones during both the construction and querying phases.
机译:为了加快相似性查询评估,索引结构将目标数据集分为多个子集,目的是在不检查整个数据集的情况下找到答案。随着现代应用程序处理的数据类型的复杂性不断增长,通过相似性进行搜索变得越来越有趣,这使得度量空间理论成为构建用于索引复杂数据的结构的理论基础。而且,随着主存储器容量的增加和价格的下降,越来越大的数据库可以完全索引到主存储器中。因此,越来越多的应用程序要求数据库管理系统快速构建可以利用基于内存的索引的索引。在本文中,我们提出了一种新的度量访问方法系列,称为NOBH树,该方法允许对数据空间进行不重叠的划分,将Voronoi形与球形区域结合起来以划分度量空间。我们展示了如何查询被超平面划分的子空间,以及如何评估从任何元素到超平面的距离。从实验中获得的结果表明,新的MAM在构造和查询阶段都比现有的MAM具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号