首页> 外文期刊>Data & Knowledge Engineering >Graph based knowledge discovery using MapReduce and SUBDUE algorithm
【24h】

Graph based knowledge discovery using MapReduce and SUBDUE algorithm

机译:使用MapReduce和SUBDUE算法的基于图的知识发现

获取原文
获取原文并翻译 | 示例

摘要

Knowledge Discovery is the process of extracting useful and hidden information. Extracting knowledge from data represented in the form of graphs is emerging in this new generation. Graphs are used to model and solve many real world problems. In this work, we aim to show how skills data from resumes is modelled into a variant of graph data structure called conceptual graph using MapReduce programming model. Resumes are taken as data source because they are the ones containing skill-sets of candidates. Initial storage and pre-processing is done in a big data framework using Hadoop Distributed File System (HDFS) and MapReduce. SUB Structure Discovery Using Examples (SUBDUE), a popular graph mining algorithm is used for retrieving common skill-sets. The results obtained from real-world dataset of resumes clearly demonstrate the potential of graph mining algorithms in skill set analytics. Proposed approach is able to extract common skill-sets. Common skill-set extraction is useful for course curriculum designers as well as job seekers.
机译:知识发现是提取有用和隐藏信息的过程。从以图表形式表示的数据中提取知识正在新一代出现。图用于建模和解决许多现实问题。在这项工作中,我们旨在展示如何使用MapReduce编程模型将简历中的技能数据建模成一种称为概念图的图数据结构变体。简历被视为数据源,因为简历包含应聘者的技能。初始存储和预处理是使用Hadoop分布式文件系统(HDFS)和MapReduce在大数据框架中完成的。使用示例(SUBDUE)进行SUB结构发现,一种流行的图挖掘算法用于检索常见技能集。从现实世界的简历数据集中获得的结果清楚地证明了图挖掘算法在技能集分析中的潜力。提议的方法能够提取常见的技能。通用技能集提取对于课程设计者和求职者很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号