首页> 外文期刊>Data & Knowledge Engineering >A multiple criteria credit rating approach utilizing social media data
【24h】

A multiple criteria credit rating approach utilizing social media data

机译:利用社交媒体数据的多标准信用评级方法

获取原文
获取原文并翻译 | 示例

摘要

Credit rating is a process for building a classification system for credit lenders to characterize current or potential credit borrowers. By such a process, financial institutions classify borrowers for lending decision by evaluating their financial and/or nonfinancial performances. Recently, use of social media data has emerged an important source of information. Accordingly, social media data can be very useful in evaluating companies' credibility when financial or non-financial assessments are missing or unreliable as well as when credit analyzers' subjective perceptions manipulate the decision. In this study, a multiple criteria credit rating approach is proposed to determine companies' credibility level utilizing social media data as well as financial measures. Additionally, to strengthen the lender's interpretation and inference competency, ratings are represented with a risk distribution based on cumulative belief degrees. Sentiment analysis, a web mining and text classification method, is used to collect social media data on Twitter. Importance of criteria is revealed through pairwise comparisons. Companies' performance scores and ratings are obtained by a cumulative belief degree approach. The proposed approach is applied to 64 companies. Results indicate that social media provides valuable information to determine companies' creditability. However credit ratings tend to decrease when social media data is considered.
机译:信用评级是为信用贷款人建立分类系统以表征当前或潜在信用借款人的过程。通过这样的过程,金融机构通过评估借款人的财务和/或非财务表现来对借款人进行贷款决策。最近,社交媒体数据的使用已成为重要的信息来源。因此,当缺少财务或非财务评估或评估不可靠,以及信用分析人员的主观感知操纵决策时,社交媒体数据对于评估公司的信誉非常有用。在这项研究中,提出了一种多标准信用评级方法,以利用社交媒体数据以及财务指标来确定公司的信誉度。此外,为了加强贷方的解释和推理能力,用基于累积置信度的风险分布来表示等级。情感分析是一种网络挖掘和文本分类方法,用于在Twitter上收集社交媒体数据。通过成对比较可以揭示标准的重要性。公司的绩效得分和评级是通过累积信任度方法获得的。建议的方法适用于64家公司。结果表明,社交媒体为确定公司的信誉提供了有价值的信息。但是,当考虑社交媒体数据时,信用评级往往会降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号