首页> 外文期刊>Control Engineering Practice >Ensemble model of wastewater treatment plant based on rich diversity of principal component determining by genetic algorithm for status monitoring
【24h】

Ensemble model of wastewater treatment plant based on rich diversity of principal component determining by genetic algorithm for status monitoring

机译:基于遗传算法的遗传算法富含主成分的废水处理厂集合模型

获取原文
获取原文并翻译 | 示例

摘要

Wastewater treatment plants (WWTPs) is a complex process, effective process monitoring can make it stable and prevent the destruction of the ecological environment. Principal component analysis (PCA) has been widely used in process monitoring. However, most PCA-based methods construct a single PCA model using several principal components (PCs), causing loss of information on some faults and less generalization ability of the PCA model. Thus, this study proposed a novel ensemble process monitoring method based on genetic algorithm (GA) for selective diversity of PCs. GA is used to determine a set of principal component subspaces with the greatest diversity as the base models. Bayesian inference is adopted to combine the results of base models into a probability index. Cases study on TE benchmark process and an actual WWTP show the excellent performance of the proposed method compared with several PCA-based methods and the strong generalization ability of the ensemble model.
机译:废水处理厂(WWTPS)是一种复杂的工艺,有效的过程监测可以使其使其稳定并防止生态环境的破坏。主要成分分析(PCA)已广泛用于过程监控。然而,基于PCA的大多数方法使用多个主组件(PC)构建单个PCA模型,导致对PCA模型的某些故障和较少的概率能力丢失信息。因此,本研究提出了一种基于基于遗传算法(GA)的新型集合过程监测方法,用于PC的选择性多样性。 GA用于确定一组具有最多分集作为基本模型的主组件子空间。采用贝叶斯推断将基础模型的结果与概率指标相结合。关于TE基准过程和实际WWTP的案例研究表明,该方法的优异性能与基于PCA的几种基于PCA的方法和集合模型的强烈泛化能力相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号