首页> 外文期刊>Concurrent engineering >Efficient allocation of data mining tasks in mobile environments
【24h】

Efficient allocation of data mining tasks in mobile environments

机译:在移动环境中高效分配数据挖掘任务

获取原文
获取原文并翻译 | 示例

摘要

Mobile data mining can be a significant added service for nomadic users, enterprises, and organizations that need to perform analysis of data generated either from a mobile device or from remote sources. A key aspect to enable data analysis and mining over mobile devices is ensuring energy efficiency, as mobile devices are battery-power operated. We worked in this direction by defining a distributed architecture in which mobile devices cooperate in a peer-to-peer style to perform a data mining process, tackling the problem of energy capacity shortage by distributing the energy consumption among the available devices. Within this framework, we propose an energy-aware scheduling strategy that assigns data mining tasks over a network of mobile devices optimizing the energy usage. The main design principle of the energy-aware strategy is finding a task allocation that prolongs the lifetime of the entire network of mobile devices by balancing the energy load among the devices. The energy-aware strategy has been evaluated through discrete-event simulation. The experimental results show that significant energy savings can be achieved by using the energy-aware scheduler in a mobile data mining scenario, compared to classical time-based schedulers.
机译:对于需要对从移动设备或远程源生成的数据进行分析的游牧用户,企业和组织,移动数据挖掘可能是一项重要的附加服务。由于移动设备采用电池供电,因此在移动设备上进行数据分析和挖掘的一个关键方面是确保能源效率。我们通过定义一种分布式体系结构朝着这个方向努力,在该体系结构中,移动设备以点对点的方式进行协作以执行数据挖掘过程,通过在可用设备之间分配能耗来解决能源容量不足的问题。在此框架内,我们提出了一种能源感知调度策略,该策略通过移动设备网络分配数据挖掘任务,以优化能源使用。节能策略的主要设计原理是找到一种任务分配,该任务分配通过平衡设备之间的能量负载来延长整个移动设备网络的寿命。通过离散事件仿真评估了能源意识策略。实验结果表明,与传统的基于时间的调度程序相比,在移动数据挖掘方案中使用节能的调度程序可以显着节省能源。

著录项

  • 来源
    《Concurrent engineering》 |2013年第3期|197-207|共11页
  • 作者单位

    Department of Informatics, Modeling, Electronics and System Engineering (DIMES), University of Calabria, Rende (CS), Italy,Institute of High Performance Computing and Networking - Italian National Research Council (ICAR-CNR), Rende (CS), Italy;

    Department of Informatics, Modeling, Electronics and System Engineering (DIMES), University of Calabria, Rende (CS), Italy;

    Department of Informatics, Modeling, Electronics and System Engineering (DIMES), University of Calabria, Rende (CS), Italy,Institute of High Performance Computing and Networking - Italian National Research Council (ICAR-CNR), Rende (CS), Italy;

    Department of Informatics, Modeling, Electronics and System Engineering (DIMES), University of Calabria, Rende (CS), Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mobile data mining; energy efficiency; scheduling strategy;

    机译:移动数据挖掘;能源效率;调度策略;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号