首页> 外文期刊>Concurrency and computation: practice and experience >Tatt-BiLSTM:Web service classification with topical attention-based BiLSTM
【24h】

Tatt-BiLSTM:Web service classification with topical attention-based BiLSTM

机译:TATT-BILSTM:Web服务分类,具有基于局部关注的Bilstm

获取原文
获取原文并翻译 | 示例

摘要

With the rapid growth of the number of Web services on the Internet, how to classify Web services correctly and efficiently become particularly important in service management tasks, such as service discovery, service selection, service ranking, and service recommendation. Existing functionality-based service classification techniques have some drawbacks: (1) the keyword order and context information are not considered; (2) the embedding features of keywords are taken as equal importance to learn the classification model; (3) the topic number is hard to determine manually. Due to these drawbacks, the accuracy of service classification needs to be improved further. At present, deep learning techniques show the strong power in modeling complex and nonlinear function relationship. Thus, to address the problems above, this paper exploits attention mechanism to combine the local implicit state vector of Bidirectional Long Short-Term Memory Network (BiLSTM) and the global hierarchical Dirichlet process (HDP) topic vector, and proposes a Web service classification approach with topical attention-based BiLSTM. Specifically, BiLSTM is used to automatically learn the keyword feature representations of Web services. Then, the topic vectors of Web service documents are obtained with HDP by offline training, and topic attention mechanism is adopted to strengthen the feature representation by discriminating the importance or weight of different keywords in Web service documents. Finally, the enhanced Web service feature representation is used as the input of a softmax neural network layer to perform the classification prediction for Web services. Extensive experiments are conducted to validate the effectiveness of the proposed approach.
机译:随着Internet上的Web服务数量的快速增长,如何在服务管理任务中正确且有效地对Web服务进行分类,例如服务发现,服务选择,服务排名和服务推荐。现有的基于功能的服务分类技术具有一些缺点:(1)不考虑关键字顺序和上下文信息; (2)关键字的嵌入功能被视为同等重要,以了解分类模型; (3)主题编号很难手动确定。由于这些缺点,需要进一步提高服务分类的准确性。目前,深度学习技术表明了建模复杂和非线性函数关系中的强大力量。因此,为了解决上述问题,本文利用了关注机制来组合双向短期内存网络(BILSTM)的本地隐式状态向量和全局分层Dirichlet过程(HDP)主题向量,并提出了一种Web服务分类方法具有基于局部关注的Bilstm。具体而言,Bilstm用于自动学习Web服务的关键字特征表示。然后,通过离线训练使用HDP获得Web服务文档的主题向量,通过判断Web服务文档中不同关键字的重要性或重量来加强主题注意机制来加强特征表示。最后,增强的Web服务特征表示用作Softmax神经网络层的输入,以执行Web服务的分类预测。进行了广泛的实验以验证所提出的方法的有效性。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2021年第16期|e6287.1-e6287.13|共13页
  • 作者单位

    Hunan Univ Sci & Technol Key Lab Serv Comp & Novel Software Technol Xiangtan Peoples R China|Hunan Univ Sci & Technol Dept Comp Sci & Engn Xiangtan Peoples R China;

    Hunan Univ Sci & Technol Key Lab Serv Comp & Novel Software Technol Xiangtan Peoples R China|Hunan Univ Sci & Technol Dept Comp Sci & Engn Xiangtan Peoples R China;

    Hunan Univ Sci & Technol Key Lab Serv Comp & Novel Software Technol Xiangtan Peoples R China|Hunan Univ Sci & Technol Dept Comp Sci & Engn Xiangtan Peoples R China;

    Hunan Univ Sci & Technol Key Lab Serv Comp & Novel Software Technol Xiangtan Peoples R China|Hunan Univ Sci & Technol Dept Comp Sci & Engn Xiangtan Peoples R China;

    Hunan Univ Sci & Technol Key Lab Serv Comp & Novel Software Technol Xiangtan Peoples R China|Hunan Univ Sci & Technol Dept Comp Sci & Engn Xiangtan Peoples R China;

    Hunan Univ Sci & Technol Key Lab Serv Comp & Novel Software Technol Xiangtan Peoples R China|Hunan Univ Sci & Technol Dept Comp Sci & Engn Xiangtan Peoples R China;

    Hunan Univ Sci & Technol Key Lab Serv Comp & Novel Software Technol Xiangtan Peoples R China|Hunan Univ Sci & Technol Dept Comp Sci & Engn Xiangtan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    attention mechanism; bidirectional long short#8208; term memory; HDP topic model; LDA topic model; Web service; Web service classification;

    机译:注意机制;双向长短‐术语记忆;HDP主题模型;LDA主题模型;Web服务;Web服务分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号