首页> 外文期刊>Concurrency, practice and experience >Enhanced transductive support vectormachine classification with greywolf optimizer cuckoo search optimization for intrusion detection system
【24h】

Enhanced transductive support vectormachine classification with greywolf optimizer cuckoo search optimization for intrusion detection system

机译:灰狼优化程序布谷鸟搜索优化对入侵检测系统的增强型转导支持向量机分类

获取原文
获取原文并翻译 | 示例

摘要

These days, the Intrusion detection System (IDS) is the most talked topic among the scientist and researchers and many research is going on in IDS, which is firmly connected to the protected utilization of system administrations. IDS are an essential part of the security infrastructure. The previous research works are focused to detect the attacks efficiently but it is failed to produce more accurate classification results. To stay away from the previously mentioned issues, in the proposed framework, Hybrid Grey Wolf optimizer Cuckoo Search Optimization (HGWCSO) along with Enhanced Transductive Support Vector Machine (ETSVM) is proposed. This exploration incorporates the modules are, for example, preprocessing, selection of features and classification of features. The processing of data is done by using normalization technique by using min-max technique the main work is to replace the value missed and filters the features from NSL KDD dataset values. The main objective of processing of data is to increase the accuracy of classification. Then, the more relevant and optimal features are selected by using HGWCSO. The GWO robustness and searching performance is increased by cuckoo search algorithm. Then, the classification is performed to identify the intrusion attack types using ETSVM algorithm more efficiently. This classification algorithm is used to improve the attack detection accuracy higher. The experimental result concludes that the proposed HGWCSO with ETSVM algorithm provides better performance metrics in terms of high precision, sensitivity, specificity, and accuracy than the previous algorithms.
机译:如今,入侵检测系统(IDS)是科学家和研究人员中谈论最多的话题,并且IDS正在进行许多研究,IDS与保护系统管理员的使用紧密相关。 IDS是安全基础结构的重要组成部分。先前的研究工作专注于有效地检测攻击,但未能产生更准确的分类结果。为了避开前面提到的问题,在提出的框架中,提出了混合灰狼优化器布谷鸟搜索优化(HGWCSO)以及增强型转导支持向量机(ETSVM)。此探索结合了模块,例如,预处理,特征选择和特征分类。数据处理是通过使用归一化技术(使用最小-最大技术)完成的,主要工作是替换遗漏的值并从NSL KDD数据集值中过滤特征。数据处理的主要目的是提高分类的准确性。然后,通过使用HGWCSO选择更相关和最佳的功能。通过布谷鸟搜索算法可以提高GWO的鲁棒性和搜索性能。然后,使用ETSVM算法执行分类以更有效地识别入侵攻击类型。该分类算法用于提高攻击检测的准确性。实验结果表明,所提出的带有ETSVM算法的HGWCSO在精度,灵敏度,特异性和准确性方面均比以前的算法提供了更好的性能指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号