首页> 外文期刊>Computing >A prediction-based model for virtual machine live migration monitoring in a cloud datacenter
【24h】

A prediction-based model for virtual machine live migration monitoring in a cloud datacenter

机译:云数据中心中虚拟机实时迁移监视的基于预测的模型

获取原文
获取原文并翻译 | 示例

摘要

Live migration of virtual machines proves to be inexorable in providing load balancing among physical devices and allowing scalability and flexibility in resource allocation. The existing approaches exhibit different policies, distinct performance characteristics, and side effects such as power consumption and performance degradation. Therefore, determining the most optimal live migration algorithm in certain situations remains an open challenge. In this work, a new prediction-based model to manage the live migration process of VMs is introduced. Our adaptive model dynamically identifies the optimal live migration algorithm for a given performance metric based on a prior diagnosis of the system. The model is developed by considering the assumption of different workloads alongside certain resource constraints for any of the currently available migration algorithms. The proposed model consists of an ensemble-learning strategy that involves linear and non-parametric regression methods to predict six live migration key metrics, provided by the operator and/or the user, for each live migration algorithm. Our model allows considering the best combination which is constituted of the algorithm-metric pair to migrate a VM. The experimental results show that the proposed model allows to significantly alleviate the service level agreement violation rate by between 31% and 60%, along with decreasing the total CPU time required for the prediction process.
机译:虚拟机的实时迁移证明是在物理设备之间提供负载平衡并允许资源分配中的可扩展性和灵活性的负载平衡。现有方法表现出不同的政策,不同的性能特征和副作用,例如功耗和性能下降。因此,确定某些情况下最佳的实时迁移算法仍然是开放挑战。在这项工作中,介绍了一种用于管理VM的实时迁移过程的新预测模型。我们的自适应模型基于系统的先前诊断动态地识别给定的性能度量的最佳实时迁移算法。通过考虑与任何当前可用的迁移算法的某些资源约束以及某些资源限制,通过考虑不同工作负载的假设来开发该模型。所提出的模型包括一个集合学习策略,其涉及线性和非参数回归方法,以预测由运营商和/或用户提供的六个实时迁移密钥度量,用于每个实时迁移算法。我们的模型允许考虑由算法 - 度量对迁移VM的最佳组合。实验结果表明,该拟议的模式允许大大缓解服务水平协议违规率在31%和60%之间,同时降低预测过程所需的总CPU时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号