首页> 外文期刊>Computing >A novel rough value set categorical clustering technique for supplier base management
【24h】

A novel rough value set categorical clustering technique for supplier base management

机译:一种新颖的粗糙度集分类群集技术,供应商基础管理

获取原文
获取原文并翻译 | 示例

摘要

Significant business implications and effective handling of supply side exceptions require a successful Supplier Base Management (SBM). The process of clustering manages the number of suppliers by grouping them on the basis of similar characteristics that reduces the number of variables impacting the operations. Several existing categorical clustering techniques for such grouping contributed well than their predecessors however, the accuracy, uncertainty, entropy and computation are key measures need to be improved. Especially, the existing clustering techniques cluster randomly in case of independent and insignificant type of data. The aim of this research is to introduce a novel rough value set based categorical clustering technique named Maximum Value Attribute (MVA). The proposed MVA techniques overcome the issues of existing techniques by combining the concept of Number of Automated Clusters (NoACs) with rough value set which makes it novel and significant clustering idea. Few relevant and necessary propositions are illustrated to prove the effectiveness of NoACs. The existing and proposed rough sets based and classical categorical clustering techniques are compared in terms of purity, entropy, accuracy, rough accuracy, time and iterations. Experimental results based on a SBM and fifteen (15) benchmark data sets reveal better performance of MVA. The experimental results show significant overall percentage improvement of proposed MVA technique against existing rough based techniques for iterations (99.7%), time (99.4%), number of obtained clusters (84%), purity (32%), entropy (32%), accuracy (20%), and rough accuracy (13%).
机译:重要的业务影响和有效处理供应方外外外的服务需要成功的供应商基础管理(SBM)。群集过程通过基于类似的特征对它们进行分组来管理供应商的数量,这减少了影响操作的变量数量。然而,几种现有的分类聚类技术贡献了比其前辈更好,但是,需要改进准确度,不确定性,熵和计算是关键措施。特别是,在独立和微不足道的数据类型的情况下,现有的聚类技术群集。本研究的目的是引入名为最大值属性(MVA)的新型粗糙度集的分类群集技术。所提出的MVA技术通过将自动化集群(NOACS)数量的概念与粗糙值集合组合来克服现有技术的问题,这使得它具有新颖和显着的聚类思想。说明了一些相关和必要的命题,以证明Noacs的有效性。基于纯度,熵,精度,粗略准确度,时间和迭代方面的现有和提出的基于粗糙集基于和经典的分类聚类技术。基于SBM和十五(15)个基准数据集的实验结果显示了MVA的更好性能。实验结果表明,采用基于粗糙的迭代技术(99.7%),时间(99.4%),获得的簇数(84%),纯度(32%),熵(32%),熵(32%),熵(32%) ,准确性(20%),精度粗糙(13%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号