首页> 外文期刊>Computing >Dynamic workload-aware DVFS for multicore systems using machine learning
【24h】

Dynamic workload-aware DVFS for multicore systems using machine learning

机译:使用机器学习的多核系统动态工作负载感知DVFS

获取原文
获取原文并翻译 | 示例

摘要

With growing heterogeneity and complexity in applications, demand to design an energy-efficient and fast computing system in multi-core architecture has heightened. This paper presents a regression-based dynamic voltage frequency scaling model which studies and utilizes workload characteristics to obtain optimal voltage-frequency (v-f) settings. The proposed framework leverages the workload profile information together with power constraints to compute the best-suited voltage-frequency (v-f) settings to (a) maintain global power budget at chip-level, (b) maximize performance while enforcing power constraints at the per-core level. The presented algorithm works in conjunction with the workload characterizer and senses change in application requirements and apply the knowledge to select the next setting for the core. Our results when compared with two state-of-the-art algorithmsMaxBIPSandTPEqachieve the average power reduction of 33% and 25% respectively across 32-core architecture for PARSEC benchmarks.
机译:随着应用中不断增长的异质性和复杂性,需要在多核架构中设计节能和快速计算系统的需求已经提升。本文提出了一种基于回归的动态电压频率缩放模型,其研究并利用工作负载特性来获得最佳电压 - 频率(V-F)设置。所提出的框架利用工作负载简档信息与功率约束一起利用,以将最佳适合的电压 - 频率(VF)设置计算为(a)在芯片级保持全球电力预算,(b)最大化性能,同时强制执行每个电源约束-core水平。呈现的算法与工作负载特征一起工作,并在应用程序要求中感测,并应用知识以选择核心的下一个设置。我们的结果与两个最先进的allthmsmaxBipsandtpeqachieve相比,平均功率降低了33%和25%的Parsec基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号