首页> 外文期刊>Computing >Optimal rendezvous points selection to reliably acquire data from wireless sensor networks using mobile sink
【24h】

Optimal rendezvous points selection to reliably acquire data from wireless sensor networks using mobile sink

机译:最佳的Rendezvous点选择,可靠地使用移动接收器从无线传感器网络获取数据

获取原文
获取原文并翻译 | 示例

摘要

In rendezvous points (RPs) based data collection, the mobile sink (MS) visits a set of sensor nodes known as RPs for data gathering from wireless sensor networks to minimize the trajectory of MS. Existing RPs based methods are suitable for the scenarios where sensor nodes have uniform data generation rates along with having limited buffer capacity to store the forwarded data. However, in some situations, the sensing rate increases due to the occurrence of unusual events in the surrounding, and the RPs receive more data packets than their capacity. This creates data loss due to buffer overflow. Therefore, the selection of optimal RPs for reliable data gathering, while minimizing the trajectory of MS, is a challenging task. This paper proposes a squirrel search algorithm-based rendezvous points selection (SSA-RPS) method that chooses a set of optimal RPs for reliable data collection. The objective of the SSA-RPS is to minimize the trajectory of MS while visiting a set of optimal RPs under non-uniform data generation and limited buffer capacity constraints of sensor nodes for reliable data acquisition. The SSA-RPS applies an efficient encoding scheme to generate variable dimension squirrels that represent each possible trajectory of MS, and the dimension of squirrel presents the number of RPs. The SSA-RPS also adopts the reselection of RPs to provide a fair energy share among sensor nodes. The simulation results demonstrate that the SSA-RPS outperforms the existing state-of-the-art methods in terms of the number of dropped packets, data gathering ratio, energy consumption, and network lifetime.
机译:在基于Rendezvous点(RPS)的数据收集中,移动接收器(MS)访问一组称为RPS的传感器节点,用于从无线传感器网络收集以最小化MS的轨迹。基于RPS的基于RPS的方法适用于传感器节点具有统一数据生成速率以及存储转发数据的有限缓冲容量的场景。然而,在某些情况下,感测率由于周围异常事件的发生而增加,并且RPS比其容量更多的数据分组。这会产生由于缓冲区溢出而产生的数据丢失。因此,选择最佳RPS以获得可靠的数据收集,同时最小化MS的轨迹,是一个具有挑战性的任务。本文提出了一种基于松鼠搜索算法的Rendezvous点选择(SSA-RPS)方法,用于选择一组可靠的数据收集的最佳RPS。 SSA-RPS的目的是最小化MS的轨迹,同时在访问一组最佳RPS下在非统一数据生成和传感器节点的有限缓冲容量约束下进行可靠的数据采集。 SSA-RPS适用于有效的编码方案来生成代表MS的每个可能轨迹的可变尺寸松鼠,并且松鼠的维度呈现RP的数量。 SSA-RPS还采用RPS重选,以提供传感器节点之间的公平能源份额。仿真结果表明,SSA-RPS在丢弃的分组,数据收集比率,能量消耗和网络寿命的数量方面优于现有的最先进的方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号