首页> 外文期刊>Computing >SADM-SDNC: security anomaly detection and mitigation in software-defined networking using C-support vector classification
【24h】

SADM-SDNC: security anomaly detection and mitigation in software-defined networking using C-support vector classification

机译:SADM-SDNC:使用C-Support Vector分类的软件定义网络中的安全异常检测和缓解

获取原文
获取原文并翻译 | 示例

摘要

The inherent features of software-defined networking (SDN) architecture revolutionize traditional network infrastructure and provide the opportunity for integrated and centralized network monitoring. One of the shortcomings of SDNs is related to its high vulnerability to distributed denial of service attacks and other similar ones. In this paper, a novel multi-stage modular approach is proposed for detecting and mitigating security anomalies in SDN environment (SADM-SDNC). The proposed approach uses NetFlow protocol for gathering information and generating dataset and information gain ratio in order to select the effective features. Also, the C-support vector classification algorithm with radial basis function kernel, and features of Floodlight controller for developing a structure with desirable performance were used in the proposed scheme. The experimental results demonstrate that the proposed approach performs better than other methods in terms of enhancing accuracy and detection rate, and reducing classification error and false alarm rate, which were measured as 99.67%, 99.26%, 0.33%, and 0.08% respectively. Finally, thanks to utilizing REST API and Static Entry Pusher technologies in the Floodlight controller, it makes it possible to disconnect any communications with the attacking factors and remove destructive users.
机译:软件定义网络(SDN)架构的固有功能彻底改变了传统的网络基础架构,并为集成和集中式网络监控提供了机会。 SDNS的缺点之一与其高脆弱性与分布式拒绝服务攻击和其他类似的高漏洞有关。本文提出了一种新的多级模块化方法,用于检测和减轻SDN环境中的安全异常(SADM-SDNC)。该方法使用NetFlow协议来收集信息和生成数据集和信息增益比以选择有效功能。此外,在所提出的方案中使用了具有径向基函数核的C-SCEST载体分类算法,以及用于开发具有所需性能的结构的泛光灯控制器的特征。实验结果表明,在提高准确度和检测率的方面,该方法比其他方法更好地表现得更好,并降低分类误差和误报率,分别测量为99.67%,99.26%,0.33%和0.08%。最后,由于利用泛光灯控制器中使用REST API和静态入口推动技术,可以断开与攻击因子的任何通信并消除破坏性用户。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号