首页> 外文期刊>Computing >Study on text representation method based on deep learning and topic information
【24h】

Study on text representation method based on deep learning and topic information

机译:基于深度学习和主题信息的文本表示方法研究

获取原文
获取原文并翻译 | 示例

摘要

Deep learning provides a new modeling method for natural language processing. In recent years, it has been applied in language model, text classification, machine translation, sentiment analysis, question and answer system, word distributed representation, etc., and a series of theoretical research results have been obtained. For the text representation task, this paper studies the strategy of fusing global and local context information, and proposes a word representation model called Topic-based CBOW that integrates deep neural network, topic information and word order information. Then, based on the word distributed representation obtained by Topic-based CBOW, a short text representation method with TF-IWF-weighted pooling is proposed. Finally, the performance of the Topic-based CBOW model and the short text representation are compared with the baseline models, and it is found that the proposed method improves the quality of the word distributed representation to some extent by introducing the topic vector and retaining word order information, and text representation also performs well in text classification tasks.
机译:深度学习为自然语言处理提供了一种新的建模方法。近年来,它已在语言模型,文本分类,机器翻译,情感分析,问答系统,词分布表示等方面得到应用,并取得了一系列理论研究成果。对于文本表示任务,本文研究了融合全局和局部上下文信息的策略,并提出了一种称为主题的CBOW的词表示模型,该模型集成了深度神经网络,主题信息和词序信息。然后,基于基于主题的CBOW获得的单词分布式表示,提出了一种基于TF-IWF加权池的短文本表示方法。最后,将基于主题的CBOW模型和短文本表示的性能与基线模型进行了比较,发现该方法通过引入主题向量和保留词在一定程度上提高了词分布式表示的质量。订单信息和文本表示形式在文本分类任务中也表现良好。

著录项

  • 来源
    《Computing》 |2020年第3期|623-642|共20页
  • 作者

  • 作者单位

    Wuhan Univ Technol Sch Comp Sci & Technol Wuhan 430063 Peoples R China|Qiannan Normal Univ Nationalities Sch Comp & Informat Duyun 558000 Peoples R China;

    Wuhan Univ Technol Sch Comp Sci & Technol Wuhan 430063 Peoples R China;

    Chinese Acad Sci Inst Informat Engn Beijing 100010 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Natural language processing; Word distributed representation; Deep learning; Topic information; Text representation;

    机译:自然语言处理;Word分布式表示;深度学习;主题信息;文字表示;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号