首页> 外文期刊>Computing >Image registration by a regularized gradient flow. A streaming implementation in DX9 graphics hardware
【24h】

Image registration by a regularized gradient flow. A streaming implementation in DX9 graphics hardware

机译:通过规则化梯度流进行图像配准。 DX9图形硬件中的流式实施

获取原文
获取原文并翻译 | 示例

摘要

The presented image registration method uses a regularized gradient flow to correlate the intensities in two images. Thereby, an energy functional is successively minimized by descending along its regularized gradient. The gradient flow formulation makes use of a robust multi-scale regularization, an efficient multi-grid solver and an effective time-step control. The data processing is arranged in streams and mapped onto the functionality of a stream processor. This arrangement automatically exploits the high data parallelism of the problem, and local data access helps to maximize throughput and hide memory latency. Although dedicated stream processors exist, we use a DX9 compatible graphics card as a stream architecture because of its ideal price-performance ratio. The new floating point number formats guarantee a sufficient accuracy of the algorithm and eliminate previously present concerns about the use of graphics hardware for medical computing. Therefore, the implementation achieves reliable results at very high performance, registering two 257(2)supercript stop images in approximately 3sec, such that it could be used as an interactive tool in medical image analysis.
机译:提出的图像配准方法使用正则化梯度流来关联两个图像中的强度。因此,通过沿着其正则梯度下降,能量函数被连续最小化。梯度流公式利用了稳健的多尺度正则化,有效的多网格求解器和有效的时间步控制。数据处理被安排在流中并映射到流处理器的功能上。这种安排自动利用了问题的高数据并行性,并且本地数据访问有助于最大化吞吐量并隐藏内存延迟。尽管存在专用的流处理器,但由于其理想的性价比,我们将DX9兼容图形卡用作流架构。新的浮点数格式保证了算法的足够准确性,并消除了先前有关将图形硬件用于医学计算的担忧。因此,该实现以非常高的性能实现了可靠的结果,在大约3秒钟内记录了两个257(2)超级密码停止图像,因此它可以用作医学图像分析中的交互式工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号