首页> 外文期刊>Computing >Prediction algorithm of PM2.5 mass concentration based on adaptive BP neural network
【24h】

Prediction algorithm of PM2.5 mass concentration based on adaptive BP neural network

机译:基于自适应BP神经网络的PM2.5质量浓度预测算法

获取原文
获取原文并翻译 | 示例

摘要

PM2.5 hadn’t received much attention until 2013 when people started to understand its dreadful impacts to human health. According to the meteorological monitoring data of PM2.5 from September 9, 2016 to September 9, 2017 in Fuling district, Chongqing, this paper analyzed the impact of temperature, humidity and the power of wind on PM2.5. Using the mathematical model of BP neural networks, a prediction model based on satellite remote sensing data for the pollutant concentration in regional scale was explored, and the forecast for Fuling 3-h PM2.5 concentration was realized. The algorithm effectively establishes the correlation between AOD and PM2.5 concentration, and it suppresses the overfitting phenomenon very well, as well as it makes up the limitation of machine learning for single site prediction.
机译:直到2013年人们开始了解PM2.5对人类健康的可怕影响之后,PM2.5才引起人们的关注。根据2016年9月9日至2017年9月9日重庆市Fu陵区的PM2.5气象监测数据,分析了温度,湿度和风力对PM2.5的影响。利用BP神经网络的数学模型,建立了基于卫星遥感数据的区域尺度污染物浓度预测模型,实现了ling陵县3-h PM2.5浓度的预测。该算法有效地建立了AOD与PM2.5浓度之间的相关性,很好地抑制了过拟合现象,并弥补了机器学习对单站点预测的局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号