首页> 外文期刊>Computing and visualization in science >NeuroBox: computational mathematics in multiscale neuroscience
【24h】

NeuroBox: computational mathematics in multiscale neuroscience

机译:Neurobox:多尺度神经科学的计算数学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The brain is a complex organ operating on multiple scales. From molecular events that inform electrical and biochemical cellular responses, the brain interconnects processes all the way up to the massive network size of billions of brain cells. This strongly coupled, nonlinear, system has been subject to research that has turned increasingly multidisciplinary. The seminal work of Hodgkin and Huxley in the 1950s made use of experimental data to derive a coherent physical model of electrical signaling in neurons, which can be solved using mathematical and computational methods, thus bringing together neuroscience, physics, mathematics, and computer science. Over the last decades numerous projects have been dedicated to modeling and simulation of specific parts of molecular dynamics, neuronal signaling, and neural network behavior. Simulators have been developed around a specific objective and scale, in order to cope with the underlying computational complexity. Often times a dimension reduction approach allows larger scale simulations, this however has the inherent drawback of losing insight into structure-function interplay at the cellular level. This paper gives an overview of the project NeuroBox that has the objective of integrating multiple brain scales and associated physical models into one unified framework. NeuroBox hosts geometry and anatomical reconstruction methods, such that detailed three-dimensional domains can be integrated into numerical simulations of models based on partial differential equations. The project further focusses on deriving numerical methods for handling complex computational domains, and to couple multiple spatial dimensions. The latter allows the user to specify in which parts of the biological problem high-dimensional representations are necessary and where low-dimensional approximations are acceptable. NeuroBox offers workflow user interfaces that are automatically generated with VRL-Studio and can be controlled by non-experts. The project further uses uG4 as the numerical backend, and therefore accesses highly advanced discretization methods as well as hierarchical and scalable numerical solvers for very large neurobiological problems.
机译:大脑是在多个尺度上运行的复杂器官。从通知电气和生化细胞反应的分子事件,脑互连的一切都可以达到数十亿脑细胞的大规模网络尺寸。这种强烈的耦合,非线性系统一直受到越来越多的多学科的研究。 20世纪50年代Hodgkin和Huxley的开创性工作利用实验数据来导出神经元中电信带的相干物理模型,可以使用数学和计算方法来解决,从而汇集神经科学,物理学,数学和计算机科学。在过去的几十年中,许多项目一直致力于对分子动力学,神经元信号传导和神经网络行为的特定部分的建模和仿真。模拟器围绕特定目标和规模开发,以应对潜在的计算复杂性。通常,尺寸减少方法允许更大的尺度模拟,然而,这种情况对蜂窝水平的结构功能相互作用失去了洞察的固有缺点。本文概述了项目Neurobox的概述,该项目具有将多个大脑尺度和相关的物理模型集成到一个统一框架中的目标。 Neurobox宿主几何和解剖学重建方法,使得可以将详细的三维域集成到基于部分微分方程的模型的数值模拟中。该项目进一步关注导出用于处理复杂计算域的数值方法,以及耦合多个空间尺寸。后者允许用户指定生物问题的哪些部分是必要的,并且在低维近似是可接受的。 Neurobox提供使用VRL-Studio自动生成的工作流用户界面,并可由非专家控制。该项目进一步使用UG4作为数值后端,因此访问高度先进的离散化方法以及分层和可伸缩的数值溶剂,用于非常大的神经生物学问题。

著录项

  • 来源
    《Computing and visualization in science》 |2019年第6期|111-124|共14页
  • 作者单位

    G-CSC Goethe University Frankfurt Frankfurt Germany;

    G-CSC Goethe University Frankfurt Frankfurt Germany;

    G-CSC Goethe University Frankfurt Frankfurt Germany;

    Department of Mathematics Temple University Philadelphia PA USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号