首页> 外文期刊>Computing in science & engineering >Cloud Computing for COVID-19: Lessons Learned From Massively Parallel Models of Ventilator Splitting
【24h】

Cloud Computing for COVID-19: Lessons Learned From Massively Parallel Models of Ventilator Splitting

机译:Covid-19的云计算:从大型平行呼吸机分裂模型中了解的经验教训

获取原文
获取原文并翻译 | 示例

摘要

A patient-specific airflow simulation was developed to help address the pressing need for an expansion of the ventilator capacity in response to the COVID-19 pandemic. The computational model provides guidance regarding how to split a ventilator between two or more patients with differing respiratory physiologies. To address the need for fast deployment and identification of optimal patient-specific tuning, there was a need to simulate hundreds of millions of different clinically relevant parameter combinations in a short time. This task, driven by the dire circumstances, presented unique computational and research challenges. We present here the guiding principles and lessons learned as to how a large-scale and robust cloud instance was designed and deployed within 24 hours and 800 000 compute hours were utilized in a 72-hour period. We discuss the design choices to enable a quick turnaround of the model, execute the simulation, and create an intuitive and interactive interface.
机译:开发了一种患者特定的气流模拟,以帮助解决呼吸能力响应于Covid-19大流行的呼吸能力的压力。计算模型提供有关如何在两个或更多患者之间分离呼吸生理患者之间的呼吸机的指导。为满足快速部署和识别最佳患者特定调整的需求,需要在短时间内模拟数亿不同的临床相关参数组合。这项任务由可怕的情况推动,呈现了独特的计算和研究挑战。在这里,我们在这里介绍了关于大规模和强大的云实例在24小时内设计和部署的指导原则和经验教训,在72小时内使用了800 000小时。我们讨论设计选择以启用模型的快速变化,执行模拟,并创建直观和交互式界面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号