首页> 外文期刊>Computing in science & engineering >Exploiting Activity for the Modeling and Simulation of Dynamics and Learning Processes in Hierarchical (Neurocognitive) Systems
【24h】

Exploiting Activity for the Modeling and Simulation of Dynamics and Learning Processes in Hierarchical (Neurocognitive) Systems

机译:分层(神经认知)系统中动态和学习过程建模与模拟的开发活动

获取原文
获取原文并翻译 | 示例

摘要

Although modeling and simulation depend on each other, there is no means to formally simplify models and corresponding simulations at the same time. The activity concept elicits the coordination and the number of computations of a system, highlighting salient features about its dynamics. I follow here a neurocognitive example linking and applying definitions and algorithms based on an (neuronal) activity measure. At the modeling level, activity state regions are identified dynamically. At the simulation level, I present how to track the activity region at the component level. At the learning level, I finally present an activity-based search algorithm that is able to find the best components (actions) in a network (a series of actions). Activity regions are used hierarchically from neurons to actions.
机译:虽然建模和仿真彼此相互依赖,但是在不同时使用模型和相应的模拟的方法。活动概念引发了系统的协调和计算数量,突出了关于其动态的突出特征。我在这里跟随基于(神经元)活动测量的神经认知示例链接和应用定义和算法。在建模级别,动态识别活动状态区域。在仿真级别,我介绍了如何跟踪组件级别的活动区域。在学习级别,我终于呈现了一种基于活动的搜索算法,可以找到网络中的最佳组件(动作)(一系列动作)。活动区从神经元分层使用到行动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号