首页> 外文期刊>Computing in science & engineering >Extreme Data-Intensive Scientific Computing
【24h】

Extreme Data-Intensive Scientific Computing

机译:极端数据密集型科学计算

获取原文
获取原文并翻译 | 示例

摘要

Scientific computing increasingly involves massive data; in astronomy, observations and numerical simulations are on the verge of generating petabytes. This new, data-centric computing requires a new look at computing architectures and strategies. Using Amdahl's law to characterize architectures and workloads, it's possible to use existing commodity parts to build systems that approach an ideal Amdahl machine. Modern science is approaching the point where novel computational algorithms and tools, combined with computational thinking, will become as indispensable as mathematics. This trend is being driven by the fact that scientific datasets across a range of fields are doubling in size every year, thus creating complex challenges for traditional analysis techniques. Analyses of the information contained within these datasets have already led to revolutionary breakthroughs in fields ranging from genomics to high-energy physics, encompassing every scale of the physical world. Much more remains undiscovered.
机译:科学计算越来越涉及大规模数据;在天文学中,观察和数值模拟是在产生Petabytes的边缘。这种新的数据为中心的计算需要新的查看计算架构和策略。使用Amdahl的法律来表征架构和工作负载,可以使用现有的商品零件来构建接近理想的Amdahl机器的系统。现代科学正在接近新颖的计算算法和工具与计算思维相结合的观点将变得不可或缺的数学。这一趋势是由一系列领域的科学数据集每年增加一倍,从而为传统分析技术创造复杂的挑战。这些数据集中包含的信息的分析已经导致从基因组学到高能物理的革命突破,包括每个物理世界的规模。更遗失的是未被发现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号