首页> 外文期刊>Computing and Information Systems >A Modified DBSCAN Clustering Algorithm
【24h】

A Modified DBSCAN Clustering Algorithm

机译:一种改进的DBSCAN聚类算法

获取原文
获取原文并翻译 | 示例

摘要

DBSCAN is one of the most famous clustering algorithms that is based on density clustering, it can find clusters of arbitrary shapes. A major limitation of DBSCAN is its sensitivity to the input parameters also it cannot handle data containing clusters of varying densities. In this paper, we introduce some enhancement to DBSCAN algorithm by estimating its parameters based on the number of occurrences of the fifth neighbor distance. Also, we make a merge to the obtained clusters that are close to each other and have same density and have a thick area joining them. Experimental results demonstrate that our algorithm is effective and efficient and outperform DBSCAN in detecting clusters of different densities.
机译:DBSCAN是最著名的基于密度聚类的聚类算法之一,它可以找到任意形状的聚类。 DBSCAN的一个主要限制是它对输入参数的敏感性,而且它不能处理包含不同密度簇的数据。在本文中,我们根据第五个邻居距离的出现次数来估计其参数,从而对DBSCAN算法进行一些增强。此外,我们对彼此接近且密度相同且连接区域较厚的聚类进行合并。实验结果表明,我们的算法在检测不同密度的簇时是有效且高效的,并且优于DBSCAN。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号